# Actual Divergence of perturbative QCD series at Low Energy, II

[The AS Summation, APT & MPT models for QCD]

### **Dmitry V. SHIRKOV**

Bogoliubov Lab, JINR, Dubna

VIII Math. Phys. Meeting @Belgrade, Sept'12

Actual Divergence of pQCD series at LE, Pt.II – p. 1

Asympt.Series (AS) born by Essential Singularity  $e^{-1/g}$ 

The singularity  $e^{-1/g}$  is usual in Theory of Big Systems (representable via Functional or Path Integral) :

- Turbulence
- Classic and Quantum Statistics
- Quantum Fields

**Reason : small parameter**  $g \ll 1$  at nonlinear structure

- Energy Gap in SuperFluidity and SuperConductivity
- Tunneling in QM
- Quantum Fields (Dyson singularity), ...

Generally, a certain AsymptSeries can correspond to a set of various functions.

# Their "summation" is an Art.

## Dangerous domain for the pQCD

In QFT, all observables being renorm-invariant are expressible via RG-invariant coupling function; in perturb. QCD case – in the form of Taylor series in powers of strong "running" coupling  $\alpha_s(Q)$ . Due to non-abelian anti-screening, it decreases with the momentum-transfer Q increase (asymptotic freedom). Accordingly,  $\alpha_s(Q)$ grows up to 0.3-0.4 values at  $Q \sim 1 - 2 \, GeV$  = = Dangerous domain !



#### Perturb QCD contribution to Bjorken SR blows up

$$\Gamma_1(Q^2) = \frac{g_A}{6} \left[ 1 - \Delta^{PT}(Q^2) \right] + \Gamma_{HT}; , \qquad (1)$$

is known now up to the 4-loop term

$$\Delta^{PT} = \frac{\alpha_s(Q)}{\pi} + 0.363\alpha_s^2(Q) + 0.652\alpha_s^3(Q) + 1.804\alpha_s^4(Q)$$
(2)



Actual Divergence of pQCD series at LE, Pt.11 – p. 4

PT

4.0

#### The Lessons of two Illustrations



It is staggering that both the examples – alternating & non-alternating – close follow not only the transparent "critical order rule"  $K \sim 1/g$  but more subtle the "Poincaré error estimate"  $\Delta F(\alpha_s) \sim f_K$  as well.

A good old example: The  $g \phi^4$  beta-function was known up to the  $N^3LO$  term

$$\beta_{\overline{\mathrm{MS}}} = \frac{3}{2} g^2 - \frac{17}{6} g^3 + 16.27 g^4 - 135.8 g^5 \, .$$

The Kazakov-Sh.-80 "summed" [by Conform-Borel method] expression

$$\beta_{\overline{\mathrm{MS}}}^{CB}(g) = \int_0^\infty \frac{dx}{g} e^{-x/g} \left(\frac{d}{dx}\right)^5 B(x) \quad \text{with} \tag{3}$$
$$B(x) = a \, x^2 (1 - b_2 w + \dots - b_4 w^3); \quad w(x) - \text{conform variable};$$

contains  $N^4LO$  term  $\beta_6^{CB} = 1409.6$ .

A good old example: The  $g \phi^4$  beta-function was known up to the  $N^3LO$  term

$$\beta_{\overline{\text{MS}}} = \frac{3}{2}g^2 - \frac{17}{6}g^3 + 16.27g^4 - 135.8g^5$$

The Kazakov-Sh.-80 "summed" [by Conform-Borel method] expression

$$\beta_{\overline{\mathrm{MS}}}^{CB}(g) = \int_0^\infty \frac{dx}{g} e^{-x/g} \left(\frac{d}{dx}\right)^5 B(x) \quad \text{with} \tag{4}$$
$$B(x) = a \, x^2 (1 - b_2 w + \dots - b_4 w^3); \quad w(x) - \text{conform variable};$$

contains  $N^4LO$  term  $\beta_6^{CB} = 1409.6$ . Soon, it was calculated via Feynman diagrams. Comparing of  $\beta_6 = 1420.6$  gives the accuracy of the (4) prediction – within 1 % ! !

# Higher PT contributions to observables

Relative contributions (in %) of 1–, 2–, 3– and 4–loop terms

| <b>Process</b> Scale/Gev |   |      | PT (in %) |    |    |    |
|--------------------------|---|------|-----------|----|----|----|
| the loop number =        |   |      | 1         | 2  | 3  | 4  |
| Bjorken SR               | t | 1    | 35        | 20 | 19 | 26 |
| Bjorken SR               | t | 1.78 | 56        | 21 | 13 | 11 |
| GLS SumRule              | t | 1.78 | 58        | 21 | 12 | 11 |
| Incl. $	au$ -decay       | S | 1.78 | 51        | 27 | 14 | 7  |

Actual Divergence of pQCD series at LE, Pt.II – p. 7

Relative contributions of 1- ... 4–loop terms in  $e^+e^- \rightarrow {\rm hadrons}$ 

| Function          | Scale/Gev | PT terms (in %) |    |    |      | Comment   |  |
|-------------------|-----------|-----------------|----|----|------|-----------|--|
| the loop number = |           | 1               | 2  | 3  | 4    |           |  |
| r(s)              | 1         | 65              | 19 | 55 | - 39 | ?!?       |  |
| r(s)              | 1.78      | 73              | 13 | 24 | -10  | ?!        |  |
| d(Q)              | 1         | 56              | 17 | 11 | 16   | in agenda |  |
| d(Q)              | 1.78      | 75              | 14 | 6  | 5    | in agenda |  |

In the r(s) higher coefficients –

— terrible effect of the  $\pi^2$  terms !

## The 3- and 4-loop pQCD for Bjorken SumRule



**4-loop fit is slightly worse than the 3-loop one** 

# Extracting $\Lambda_{QCD}$ from Bjorken SR



**Extracting**  $\Lambda_{QCD}$  from 3- and 4-loop fits for JLab data Again no profit from the 4-loop fit !

VIII Math. Phys. Meeting @Belgrade, Sept'12

- Non-power set of PT-expansion functions  $\mathcal{A}_k(Q)$  instead of the  $\alpha_s(Q)$  powers ;
- All the functions reflect RG-invariance and causality via Qr-analyticity;
- **Solution** Euclidean  $A_k$  expansion functions are different from the Minkowskian  $\mathfrak{A}_k$  ones ; all of them :
  - are related via differential recurrent relations
  - the higher functions  $k \ge 2$  vanish at the IR limit ;
  - in the region above 1-2 GeV quickly tend to the  $\alpha_s$  powers ;
- As all the expansion functions incorporate  $e^{-1/\alpha_s}$  structures, the PT convergence improves drastically;

Numerous applications to data analysis demonstrate the APT effectiveness in the 1 GeV region. However, below 500 MeV the APT meets some troubles.

# On the $[Q^2 exp1/\alpha_s]$ structure

RG-invariance reducing the No of independent arguments, – in the massless UV case

$$f(\ln Q^2, \alpha_s) \to F_{RGinv}\left(\frac{1}{\alpha_s} + \beta_0 \ln\left(\frac{Q^2}{\mu^2}\right)\right) = \Psi\left(\frac{Q^2}{\mu^2} e^{1/\beta_0 \alpha_s} = \frac{Q^2}{\Lambda^2}\right);$$

together with  $Q^2$  analyticity yields one more statement on inevitable not-perturbative nature  $\sim e^{-1/\alpha_s}$  of all algebraic -in  $Q^2$ - structures, like HT terms (and singularity-killing structures in APT). E.g., at the

1-loop case 
$$\alpha_{\mathbf{s}}(\mathbf{Q}^2) = \frac{\alpha_{\mathbf{s}}}{1 + \alpha_{\mathbf{s}}\beta_0 \ln(\mathbf{Q}^2/\mu^2)} = \frac{1}{\beta_0 \ln(\mathbf{Q}^2/\Lambda^2)} \to \mathcal{A}_1(\mathbf{Q}^2);$$

$$\mathcal{A}_{1}(\mathbf{Q}^{2}) = \frac{1}{\beta_{0} \ln(\mathbf{Q}^{2}/\Lambda^{2})} + \frac{\Lambda^{2}}{\beta_{0} (\Lambda^{2} - \mathbf{Q}^{2})} = \alpha_{s}(\mathbf{Q}^{2}) + \frac{\mu^{2}}{\beta_{0} (\mu^{2} - \mathbf{Q}^{2} e^{1/\beta_{0}\alpha_{s}})}.$$

The UV log is responsible for singularity at  $Q^2 = 0$ .

# Comparing APT couplings with singular $\alpha_s(Q^2)$



#### VIII Math. Phys. Meeting @Belgrade, Sept'12

Actual Divergence of pQCD series at LE, Pt.II – p. 13

## The APT smooth coupling vs. lattice $\alpha_s(p)$ , below 1 GeV



The APT coupling has no problem with Landau singularity being finite down to IR. However, at  $Q \leq 1 \,\mathrm{GeV}$  it is smaller than lattice-simulated  $\alpha_s$ ; besides it has infinite derivative at IR limit



Loop dependence of  $\alpha_{APT}(Q)$  and  $\tilde{\alpha}_{APT}(s)$ [ 2- and 3-loops very close each other]

Higher APT expansion functions [ vanish at the IR limit]

An unpleasant feature one still has in APT the infinite derivatives at  $Q^2 = 0$ .

## The JLab-data Description by PT and by APT+HT



Anti-progress as 2  $\to$  3  $\to$  4-loop PT below  $Q<1\,{\rm GeV}$  vs. stable APT+HT fit down to  $Q^2\sim 0.4\,{\rm GeV}^2$ 

## Table 1: HT extraction from JLab data on BSR in PT – uncertain ?

| РТ                | $Q_{min}^2,$ | $\mu_4/M^2$ | $\mu_6/M^4$ | $\mu_8/M^6$ |
|-------------------|--------------|-------------|-------------|-------------|
| NLO               | 0.5          | -0.028(5)   |             |             |
| N <sup>2</sup> LO | 0.66         | -0.014(7)   |             |             |
| N <sup>3</sup> LO | 0.66         | 0.005(9)    |             | _           |

## Table 2: HT extraction from JLab data in APT – Stable !.

| APT               | $Q^2_{min}, {f GeV}^2$ | $\mu_4/M^2$ | $\mu_6/M^4$ | $\mu_8/M^6$ |
|-------------------|------------------------|-------------|-------------|-------------|
| NLO               | 0.078                  | -0.061(4)   | 0.009(1)    | -0.0004(1)  |
| N <sup>2</sup> LO | 0.078                  | -0.061(4)   | 0.009(1)    | -0.0004(1)  |
| N <sup>3</sup> LO | 0.078                  | -0.061(4)   | 0.009(1)    | -0.0004(1)  |

Need for the APT modification; The MPT scheme

**The proposed** *"massive analytic pQCD"* **= MPT is constructed on the two grounds.** 

\* One is the pQCD itself with one parameter added, the effective "glueball mass",  $m_{gl} \lesssim 1 \,\text{GeV}$  serving as an IR regulator.

\*\* The second stems out of the ghost-free Analytic Perturbation Theory (= APT) comprising **Non-power perturbative expansion** that makes it compatible with linear integral transformations.