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•

Higher Spin Field Theories have been one of

fascinating and rapidly developing subjects over

recent few years

•

Higher spin fields constitute a crucial ingredi-

ent of AdS/CFT correspondence since they are

presumably dual to multitudes of operators in

the related CFT’s.

•

Higher Spin symmetries may also hold an im-

portant key to understanding of the true sym-

metries of gravity and unification models

•

Despite significant progress in describing the

dynamics of higher spin field theories, achieved
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over recent few decades, our understanding of

the general structure of the higher spin inter-

actions is still very far from complete

•

One of the conceptual difficulties of construct-

ing consistent gauge-invariant HS theories is

related to the existence of the no-go theorems

(such as Coleman-Mandula theorem)

•

The no go theorems can, however, be cir-

cumvented in a number of cases, e.g. in the

AdS space (where there is no well-defined S-

matrix) also by relaxing some of constraints

on locality etc.

•

String theory appears to be a particularly effi-

cient and natural framework to construct and
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analyze consistent gauge-invariant interactions

of higher spins

•

In my talk I review the basic concepts of

string theory approach to analysis of higher

spin interactions and the relation between ver-

tex operator formalism in string theory and

frame-like description of higher spin dynamics
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OUTLINE:

•

Metric (Fronsdal) vs Frame-like Approaches to

HS Field theories - brief review

•

String Theory approach - Vertex Operator Con-

struction for Massless Higher Spin connection

Gauge Fields

•

Higher Spin Interaction Vertices in Flat Space

from String Theory Amplitudes

•

Extension to AdS Space and Holography. String-

theoretic Sigma-Model for HS dynamics in AdS.

•
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AdS4/CFT3 HS Holography and Liouville Field

Theory.

•

AdS5/CFT4 HS Holography and Fluid Dy-

namics. Higher Spins in AdS5 as Vorticities

in D = 4 Turbulence.

•

Conclusion and Discussion

•
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In the simplest formulation, fields of spin s

are described by symmetric double traceless

tensors of rank s satisfying Pauli-Fierz on-shell

conditions:

(∂m∂
m +m2)Hn1...ns(x) = 0

∂n1Hn1...ns(x) = 0

ηninjηnknlHn1...ns(x) = 0

(1 ≤ i < j ≤ s; 1 ≤ k < l ≤ s; i 6= j 6= k 6= l)

(from now on we will limit ourselves to the

m2 = 0 case) and the gauge symmetry

δHi1...is(x) = ∂(i1Λi2...is)(x) (0.1)

where Λ is symmetric and traceless. The

gauge invariant free field action leading to (1),

(2) has been first constructed by C. Fronsdal
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in 1978 and is given by:

S =
1

2

∫
ddx(∂mHn1...ns∂

mHn1..ns

−
1

2
s(s− 1)∂mH

n
nn3...ns∂

mH
pn3..ns
p

+s(s− 1)∂mH
n
nn3...ns∂

pH
mn3..ns
p

−s∂mH
m
n2...ns∂

nH
n2..ns
n

−
1

4
s(s− 1)(s− 2)∂mH

mn
nn3...ns∂

pH
qn3..ns
pq )

•

This formalism, regarding H as a metric-type

object, is difficult to extend to the interacting

case and/or to AdS geometry, although some

limited progress was achieved in this direction.

In particular, various examples of cubic inter-

action vertices in flat space were constructed

in this formalism (e.g. Berends-Burgers-Van
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Dam (1996);Boulanger-Bekaert-Cnockaert (2006);

Sagnotti-Taronna (2010); Manvelyan,Mkrtchan,Ruhl

2009 etc.) However, to analyze the HS dynam-

ics and HS symmetries in both flat and espe-

cially curved backgrounds such as AdS it is

more natural to use the frame-like formalism

developed by Vasiliev et.al. which turns out

to be a powerful approach...

•

Unlike the approach used by Fronsdal that

considers higher spin tensor fields as metric-

type objects, the frame-like formalism describes

the higher spin dynamics in terms of higher

spin connection gauge fields that generalize ob-

jects such as vielbeins and spin connections in

gravity (in standard Cartan-Weyl formulation

or Mac Dowell-Mansoury-Stelle-West (MMSW)
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in case of nonzero cosmological constant). The

higher spin connections for a given spin s are

described by collection of two-row gauge fields

(with the rows of lengths s − 1 and t accord-

ingly)

ωs−1|t ≡ ω
a1...as−1|b1..bt
m (x)

0 ≤ t ≤ s− 1

1 ≤ a, b,m ≤ d

traceless in the fiber indices, where m is (gen-

erally) the curved d-dimensional space index

while a, b label the tangent space with ω sat-

isfying

ω
(a1...as−1|b1)..bt
m = 0

The higher spin connections for a given spin

s are described by collection of two-row gauge
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fields

ωs−1|t ≡ ω
a1...as−1|b1..bt
m (x)

0 ≤ t ≤ s− 1

1 ≤ a, b,m ≤ d

traceless in the fiber indices, where m is the

curved d-dimensional space index while a, b la-

bel the tangent space with ω satisfying

ω
(a1...as−1|b1)..bt
m = 0

The gauge transformations for ω are given

by

ω
a1...as−1|b1..bt
m → ω

a1...as−1|b1..bt
m

+Dmρ
a1...as−1|b1..bt
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while the diffeomorphism symmetries are

ω
a1...as−1|b1..bt
m (x) → ω

a1...as−1|b1..bt
m (x)

+∂mǫ
n(x)ω

a1...as−1|b1..bt
n (x)

+ǫn(x)∂nω
a1...as−1|b1..bt
m (x)

The ωs−1|t gauge fields with t ≥ 0 are auxil-

iary fields related to the dynamical field ωs−1|0

by generalized zero torsion constraints:

ω
a1...as−1|b1...bt
m ∼ ∂b1...∂btω

a1...as−1
m

skipping pure gauge terms (for convenience

of the notations, we set the cosmological con-

stant to 1, anywhere the AdS backgrounds are

concerned)

It is also convenient to introduce the d + 1-

dimensional index A = (a, d̂) (where d̂ labels

the extra dimension) and to combine ωs|t into

a single two-row field ωA1...As−1|B1...Bs−1(x)
12



identifying
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ωs−1|t = ωa1...as−1|b1...btd̂...d̂

ωA1...As−1|B1...Bs−1VAt+1...VAs−1

= ωA1...As−1|B1...Bt

where VA is the compensator field satisfying

VAV
A = 1. The Fronsdal field Ha1....as is

then obtained by symmetrizing ω(a1....as) =

em(asω
a1...as−1)
m .

•

The generalized HS curvature is defined ac-

cording to

RA1...As−1|B1...Bs−1 = dωA1...As−1|B1...Bs−1

+(ω ∧ ⋆ω)A1...As−1|B1...Bs−1

where ⋆ is the associative product in higher

spin symmetry algebra. The explicit structure

of this product depends on the basis chosen
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and in general is quite complicated The HS

dynamics is then described by EOM

RA1...As−1|B1...Bs−1VB1
...VBs−1

= 0

HS VERTEX OPERATORS:

PRELIMINARIES

•

We now turn to the questions of constructing

vertex operators for the higher spin connection

gauge fields in open RNS superstring theory.

The strategy is that

•

BRST invariance conditions on these opera-

tors leads to Pauli-Fierz on-shell constraints

•
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BRST nontriviality: Gauge symmetry trans-

formations on ωs−1|t higher spin connection

gauge fields leads to shifting the vertex oper-

ators by BRST-exact terms. The correlation

functions of the vertex operators for the frame-

like fields are therefore gauge-invariant by con-

struction.

•

The worldsheet N-point correlators of the op-

erators determine polynomial degree N inter-

actions of the HS fields in the frame-like for-

malism. In AdS backgrounds, these interac-

tions correspond toN -point correlations in dual

CFT’s.

•

In string theory the physical states are de-

scribed by physical BRST non-trivial and BRST-
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invariant vertex operators. In the zero momen-

tum limit these operators are closely related

to generators of global space-time symmetries.

For example, the photon (spin 1) vertex oper-

ator

Vph = Am(p)

∮
dz(∂Xm + i(pψ)ψm)eipX(z)

reduces to translation generator of Poincare

algebra. It is convenient to unify the Poincare

generators (Ta,Tab) into 1-form:

Ω = (eamTa + ωabmTab)dx
m

where eam and ωabm are s = 2 vielbein and

spin connection, i.e. the ω1|0 and ω1|1 com-

ponents of ω
A|B
m . Given the Poincare commu-

tation relations, R = dΩ + Ω ∧ Ω reproduces

the standard Lorenz curvature tensor for spin

2 describing gravitational fluctuations around

the flat vacuum (for Poincare replaced by AdS
17



isometry algebra one obtains Riemann’s tensor

shifted by appropriate cosmological terms)
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The higher spin generalization of Ω 1-form is

Ω = dxm(eamTa + ωabmTab

+
∑
s

s−1∑
t=0

ω
a1...as−1|b1...bt
m Ta1...as−1|b1...bt

)

where ω
a1...as−1|b1...bt
m are higher spin connec-

tions and Ta1...as−1|b1...bt
are the HS algebra

generators. For this reason, we expect the ver-

tex operators for the frame-like fields to be re-

lated to generators of HS space-time symmetry

algebra, i.e. the HS algebra is realized as an

operator algebra of the vertices.
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HS VERTEX OPERATORS:

CONSTRUCTION

•

The RNS superstring action is given by

SRNS = Smatter + Sb−c + Sβ−γ

Smatter = −
1

2π

∫
d2z{∂Xm∂̄X

m(z, z̄)

+∂̄ψmψ
m + ∂ψ̄mψ̄

m}

Sb− c =

∫
d2z{b∂̄c + b̄∂c̄}

Sβ−γ =

∫
d2z{β∂̄γ + β̄∂γ̄}

and the bosonization relations for the fermionic

and bosonic ghosts are

b(z) = e−σ; c = eσ(z)

γ(z) = eφ−χ(z) ≡ eφη(z)

β(z) = eχ−φ∂χ ≡ e−φ∂ξ(z)
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and similarly for b̄, c̄, β̄, γ̄. The nature of the

vertex operators for the frame-like fields that

we shall propose below, is very different from

the standard RNS vertices like that of a pho-

ton. As it is well known, the photon opera-

tor V0 ∼ Am(p)
∮
dz(∂Xm + (pψ)ψm)eipX

(where p2 = (pA(p)) = 0) can be also repre-

sented as at any integer superconformal ghost

picture n with the representations at different

pictures related according to

Vn =: ΓVn−1 :≡ {Q, ξVn−1}

Vn−1 =: Γ
−1Vn :

: Γ−1Γ := 1

where

Γ =: eφG :≡ {Q, ξ}

Γ−1 = −4c∂ξe−2φ

are the direct and inverse picture changing
21



operators

G = −
1

2
bγ +

3

2
β∂c + ∂βc

is the full matter+ghost worldsheet supercur-

rent
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and

Q =

∮
dz{cT − bc∂c

−
1

2
γψm∂X

m −
1

4
γ2b}

For example, for a photon

V−2 = Am(p)

∮
dze−2φ∂XmeipX

V−1 = Am(p)

∮
dze−φψmeipX

V0 = Am(p)

∮
dz(∂Xm + (pψ)ψm)eipX

The vertex operators for the higher spin con-

nection gauge fields are different, as they vio-

late the picture equivalence and their coupling

to β − γ system is essential and can be clas-

sified in terms of superconformal ghost coho-

mologies Hn.

Definition and Properties:
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•

Positive ghost cohomologies Hn(n ≥ 1) con-

sist of physical (BRST invariant and nontriv-

ial) vertex operators that exist at pictures n

and above (related by standard transforma-

tions with Γ and Γ−1) and are annihilated by

Γ−1 at the minimal positive ghost picture n.

•

Negative ghost cohomologiesHn(n ≤ −3) con-

sist of physical (BRST invariant and nontriv-

ial) vertex operators that exist at pictures n

and below (related by standard transforma-

tions with Γ and Γ−1) and are annihilated by

direct picture changing Γ at the minimal pos-

itive ghost picture n

•

There is an isomorphism between positive and
24



negative ghost cohomologies: Hn ∼ H−n−2;n ≥

1 as any element V (−n−2) ofH−n−2 is related

to to the corresponding element element V (n)

of Hn by transformation: V (n) ∼: ZΓ2n+2 :

V (−n−2) where Z =: bδ(T ) : is the p.c. oper-

ator for the b− c ghost fields (SUSY analogue

of Γ =: δ(β)G : which is the p.c. operator

for the β − γ system). Therefore, each ele-

ment of Hn has the negative picture mirror in

H−n−2 with the identical on-shall and gauge-

invariance conditions for the space-time fields.

•

The vertex operators for higher spin frame-like

fields are the elements of Hn ∼ H−n−2 with

n+2 roughly corresponding to the spin value.

•

OPE fusion rules for ghost cohomologies of dif-
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ferent ranks are similar to the HS algebraic

structure for generators with different spin val-

ues (including truncation properties)

The spin 3 operator for ω2|0 dynamic field is

given by

V (−3) = Habm(p)ce
−3φ∂Xa∂XbψmeipX

at unintegrated H−3-representation and

V (+1) = K ◦Habm(p)

∮
dzeφ∂Xa∂XbψmeipX

at integrated H1-representation The homo-

topy transformation K ◦ T of an integrated

operator T =
∮
dzV (z) (with V (z) being a

primary field of dimension 1) is defined accord-

ing to

26



K◦T =

T +
(−1)N

N !

∮
dz

2iπ
(z − w)N : K∂NW : (z)

+
1

N !

∮
dz

2iπ
∂N+1
z [(z − w)NK(z)]K{Qbrst, U}

where

K = −4ce2χ−2φ

is homotopy operator satisfying

{Q,K} = 1

U and W are the operators appearing in the

commutator

[Q, V (z)] = ∂U(z) +W (z)

so

[Q,

∮
dzV (z)] = W (0.2)

It is the easiest to choose the negative coho-

mology representation for the BRST analysis.
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The BRST-invariance constraint on the spin 3

operator leads to Pauli-Fierz type conditions

p2Habm = paHabm = ηabHabm = 0

However, in general

ηamHabm 6= 0

as the tracelessness in a and m or b and m

indices isn’t required for V (−3) to be primary

field. In what follows below we shall interpret

Habm with the dynamical spin 3 connection

form ω2|0, identifying m with the manifold in-

dex and a, b with the fiber indices. So the

tracelessness condition is generally imposed by

BRST invariance constraint on any pair of fiber

indices only (but not on a pair of manifold and

fiber indices). The same is actually true also

for the vertex operators for frame-like gauge

fields of spins higher than 3. Altogether, this
28



corresponds precisely to the double traceless-

ness constraints for corresponding metric-like

Fronsdal’s fields for higher spins (although the

zero double trace condition does not of course

appear in the case of s = 3) As it is clear from

the manifest expressions, the tensor Habm is

by definition symmetric in indices a and b and

therefore can be represented as a sum of two

Young diagrams. However, only the fully sym-

metric diagram is the physical state, since the

second one (with two rows) can be represented

as the BRST commutator in the small Hilbert

space:

V (−3) ∼ {Q,W}

W = Habm(p)c∂ξe
−4φ+ipX∂Xa(ψ[m∂2ψb]

−2ψ[m∂ψb]∂φ

+ψmψb(
5

13
∂2φ +

9

13
(∂φ)2))
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+a↔ b

Of course everything described above also

applies to the vertex operator at positive co-

homology, with appropriate Z,Γ transforma-

tions. This altogether already sends a strong

hint to relate the operators for Habm to ver-

tex operators for the dynamical frame-like field

ω2|0 describing spin 3. However, to make the

relation between string theory and frame-like

formalism precise, we still need the vertex op-

erators for the remaining extra fields ω2|1 and

ω2|2. The expressions that we propose are

given by
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V 2|1(p) = 2ω
ab|c
m (p)ce−4φ ×

(−2∂ψmψc∂X(a∂
2Xb)

−2∂ψm∂ψc∂Xa∂Xb

+ψm∂2ψc∂Xa∂Xb)e
ipX

for ω2|1 and

V 2|2(p) = −3ω
ab|cd
m (p)ce−5φ ×

(ψm∂2ψc∂
3ψd∂X

a∂Xb

−2ψm∂ψc∂
3ψd∂Xa∂

2Xb

+
5

8
ψm∂ψc∂

2ψd∂Xa∂
3Xb

+
57

16
ψm∂ψc∂

2ψd∂
2Xa∂

2Xb)e
ipX

for ω2|2. We start with analyzing the operator

for ω2|1 Straightforward application of Γ to

this operator gives
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: ΓV 2|1 : (p) = V (−3)(p)Hab
m (p)

= ipcω
ab|c
m (p) (0.3)

i.e. the picture-changing of V 2|1 gives the ver-

tex operator for ω2|0 with the 3-tensor given

by the divergence of ω2|1, i.e. for pcω
ab|c
m (p) 6=

0 V 2|1 is the element of H−3. If,however,

the divergence vanishes, the cohomology rank

changes and V 2|1 shifts to H−4. This is pre-

cisely the case we are interested in. Namely,

consider the H−4 cohomology condition

pcω
ab|c
m (p) = 0

The general solution of this constraint is

ω
ab|c
m = 2pcωabm − paωbcm

−pbωacm + pdω
acd;b
m

32



where ωabm is traceless and divergence free in

a and b and satisfies the same on-shell con-

straints asHab
m , while ω

acd;b
m is some three-row

field, antisymmetric in a, c, d and symmetric

in a and b. It is, however, straightforward to

check that the operator V 2|1 with the polar-

ization given by ωab|c = pdω
acd;b
m can be cast

as the BRST commutator:

pdω
acd;b
m (p)V mac|b(p)

= {Q,ω
acd;b
m (p)

∮
dzeχ−5φ+ipX∂χ

×(−2∂ψmψc∂Xa∂
2Xb

−2∂ψm∂ψc∂Xa∂Xb

+ψm∂2ψc∂Xa∂Xb)

×(∂2ψd −
4

3
∂ψd∂φ

+
1

141
ψd(41(∂φ)

2 − 29∂2φ))}

33



therefore, modulo pure gauge terms the co-

homology condition on V2|1 is the zero tor-

sion condition relating the extra field ω2|1 to

the dynamical ω2|0 connection. Similarly, the

H−5 ∼ H3 cohomology condition on V2|2 and

ω2|2 leads to generalized zero torsion constraints

relating ω2|2 to ω2|1 and ω2|0. These are the

second generalized zero torsion condition given

by

ω
ab|cd
m = 2pdωab|c − paωbd|c

−pbωad|c + 2pcωab|d − paωbc|d − pbωac|d

relating ω2|2 to ω2|1 modulo BRST-exact

terms ∼ {Q,W 2|2(p)} where

W 2|2(p) = ωab;cdf (p)

∮
dzeipX [

×(ψm∂2ψc∂
3ψd∂X

a∂Xb
34



−2ψm∂ψc∂
3ψd∂Xa∂

2Xb

+
5

8
ψ(m∂ψc∂

2ψd)∂Xa∂
3Xb

+
57

16
ψm∂ψc∂

2ψd∂
2Xa∂

2Xb)

×(−
5

2
Lf∂

2ξ + ∂Lf∂ξ)

where, as previously, ξ = eχ and

Lf = e−6φ(∂2ψf − ∂ψf∂φ

+
3

25
ψf ((∂φ)

2 − 4∂2φ))

.

Similarly,

The gauge transformation for the ω2|1 field:

ω
ab|c
m (p) → ω

ab|c
m (p) + pmΛ

ab|c(p)

leads to shifting the V 2|1 vertex operator

(21) by BRST-exact terms:
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V 2|1(p) → V 2|1(p) + {Q,W
2|1
1 (p)}

where, up to overall numerical factor,

W
2|1
1 (p) ∼ Λab|c(p)

∮
dzce−5φ+ipX

×((p∂ψ)(ψc∂
2Xb − 2∂ψc∂Xb)

+(pψ)∂2ψc∂Xb)

×(
2

5
∂La∂ξ − La∂

2ξ)

where

La = ∂2ψa − 2∂ψa∂φ

+
1

13
ψa(5∂

2φ + 9(∂φ)2)

and Λ has the same symmetry in the fiber

indices as ω2|1. This operator is BRST-exact if

36



ω is transverse in the a, b fiber indices (which,

in turn, is the invariance condition). Next, if

ω
ab|c
m (p) is antisymmetric in m and a (so that

the corresponding ω2|0 is the two-row field),

V 2|1 is again the BRST commutator in the

small Hilbert space:

V 2|1(p) = {Q,W
2|1
2 (p)}

where

W
2|1
2 (p) ∼ ω

ab|c
m (p)

∮
dzce−5φ+ipX

×(ψc∂
2Xb − ∂ψc∂Xb)

×(
2

5
∂ψ[m∂La]∂ξ − ∂ψ[mLa]∂

2ξ)

+∂2ψc∂Xb(
2

5
ψ[m∂La]∂ξ

−ψ[mLa]∂
2ξ)
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Next, we analyze ω2|2 and its vertex operator.

The gauge transformation for the ω2|2 field:

ω
ab|cd
m (p)→ω

ab|cd
m (p) + pmΛ

ab|cd(p)

leads to shifting the V 2|2 vertex operator (21)

by BRST-exact terms:

V 2|2(p) → V 2|2(p) + {Q,W
2|2
1 (p)}

with

W
2|2
2 (p) ∼ Λab|cd(p)

∮
dzce−6φ+ipX

×{(
1

4
(pn∂N

n)∂ξ − (pnN
n)∂2ξ)

×(∂2ψc∂
3ψd∂X

a∂Xb

−2∂ψc∂
3ψd∂Xa∂

2Xb

+
5

8
∂ψc∂

2ψd∂Xa∂
3Xb

+
57

16
∂ψc∂

2ψd∂
2Xa∂

2Xb)}
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where

Nn = ∂3Xn −
3

2
∂2Xn

−
1

3
∂Xn((∂φ)

2 −
17

6
∂2φ)

As before, this operator is BRST-exact if ω

is transverse in the a, b fiber indices. Finally,

if ω
ab|cd
m (p) is antisymmetric in m and a or b

(so that the corresponding ω2|0 is the two-row

field), V 2|2 is again the BRST commutator in

the small Hilbert space:

V 2|2(p) = {Q,W
2|2
2 (p)}

with

W
2|2
2 (p) ∼ ω

ab|cd
m (p)

∮
dzce−6φ+ipX

{(
1

4
Nm∂ξ − (Nm)∂2ξ)

×(∂2ψc∂
3ψd∂X

a∂Xb
39



−2∂ψc∂
3ψd∂Xa∂

2Xb

+
5

8
∂ψc∂

2ψd∂Xa∂
3Xb

+
57

16
∂ψc∂

2ψd∂
2Xa∂

2Xb)

−(a↔ m)}

It is now straightworward to compute 3-point

cubic vertex for s = 3 Note that, string theo-

retic computation in the Fronsdal’s formalism

would be impossible to apply to s = 3 cubic

vertex in a straightforward way sinse

H1 ⊗H2 ∼ H0 ⊕H2

while Fronsdal-type correlator for s = 3 cu-

bic vertex would be of the type < H1H1H1 >

Therefore the string-theoretic formal-

ism must be combined with frame-like

40



description in this computation Since

ω2|1V2|1 ⊂ H2

H1 ⊗H1 ∼ H2 + ...

the relevant correlator is given by

A(p, k, q) =<: Γ2V2|1 : (p)V2|0(k)V2|0(q) >

where the double picture changing transfor-

mation of V2|1 operator for ω
2|1 frame-like field

is needed to ensure the correct ghost num-

ber balance ( any correlator must carry total

ghost φ- number−2, ghost χ- number +1, and

ghost σ- number +2, in order to ensure the

cancellation of b, c, β, γ background charges)

Note that the ghost balance conditions cru-

cially control the derivative structure of HS

interactions and also the HS algebraic struc-
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ture both in flat and AdS backgrounds. The

final answer for the 3-point spin 3 interaction

vertex is

A(p, k, q) =
691072283467i

720

×ω
s1s2
n (p)ω

t1t2
p (k)ω

ab|cd
m (q)

×{ηnmηpd(
1

36
ηs1aηs2bηt1cqt2

+
4

3
ηt1aηs1bηt2cks2

+
1

12
ηs1t1ηs2aηt2bkc

−ηs1t1ηs2aηt2cpb) + Symm(m, a, b)}

This , up to total derivative terms and over-

all normalization factor, reproduces the well-

known BBD (Berends,Burgers, Van Dam) 3-

derivative interaction vertex for spin 3 fields

Using this formalism, it is also straightforward

to calculate new (so far, unknown) gauge in-
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variant quartic interactions of spin 5 - spin

1, spin 3-spin 1 , along with gravitational in-

teractions of spin 3 and to extend these cal-

culations for AdS case (D.P.,Phys.Rev. D82

(2010) 066005, Phys.Rev. D83 (2011) 046005,

Phys.Rev. D84 (2011) 126004; Seunjing Lee

and D.P., 1203.0909 , D.P. and Soo-Jong Rey,

in progress)

Discussion and Outline

•

The entire subject is a rapidly developing field

with many exciting prospects, opportunities

an fascinating problems and mysteries to re-

solve.

•

A very subjective and incomplete of questions

to address in the near future includes:
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•

Usin string-theoretic approach for construct-

ing consistent gauge-invariant interactions of

fields with spin greater than 3 as well as higher

order (quartic, quintic etc) and to extend these

results to AdS backgrounds

•

Developing an OPE string-theoretic approach

to AdS higher spin algebras in order to under-

stand sequence of holographies existing in the

Universe (ADT conjecture, AdS/CFT may be

just particular examples of certain far more

general principle relating field and string the-

ories in various dimensions

•

Higher derivative interactions in HS field the-

ories vs. higher derivative expansion in hy-
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drodynmics; Strings/HS versus Gravity/Fluid

dynamics and AdS/CMT?

•

Higher Spins as a secret key to non-SUSY holog-

raphy; a brave new world but nothing new un-

der the Sun!
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