West University of Timişoara Faculty of Physics

Aspects of quantum modes on de Sitter spacetime

speaker: Gabriel Pascu

Belgrade 11 Sept. 2012

Introduction

openstreetmap.org

West University of Timişoara Faculty of Physics

Gabriel Pascu

- PhD student
- thesis: "Contributions to the quantum field theory on de Sitter spacetime"
- adviser: prof. dr. Ion I. Cotăescu

Outline of the Short-Talk

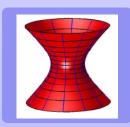
- 1 de Sitter spacetime
 - The de Sitter background
 - Charts on dS spacetime
- Quantum Modes
 - de Siter spacetime and modes
 - Conserved operators
 - Defining the quantum modes
 - Modes on the euclidean chart
 - Spherical energy basis modes
- 3 Concluding remarks

The de Sitter manifold

• can be embedded in a 5D Minkowski space

Constraint:

$$\eta_{AB}Z^AZ^B = -\frac{1}{\omega^2}$$



		embedding	
manifold	\mathbb{M}^5		$d\mathbb{S}$
coords.	$\{Z^A\}$	\rightarrow	$\{x^{\mu}\}$
metric	η^{AB}	$Z^A = Z^A(x^\mu)$	$g^{\mu \nu}$

Metric tensor and Killing vectors

Induced metric on dS

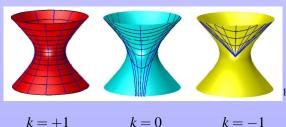
$$g_{\mu\nu} = \eta_{AB} \frac{\partial Z_A}{\partial x^{\mu}} \frac{\partial Z_B}{\partial x^{\nu}}$$

- inherits its isometry group from the gauge group of \mathbb{M}^5 : SO(1,4)
- is a maximally symmetric spacetime (has 10 Killing vectors)

$$k_{AB}^{\mu} = g^{\mu\nu} Z_A \stackrel{\leftrightarrow}{\partial}_{\nu} Z_B$$

FLRW charts

- dS manifold is the only one that admits all 3 types of FLRW charts
- important for cosmology: exhibit isotropy (rotational symmetry is manifest) and homogeneity
- ∂_t is not a Killing vector



hyperspherical

k = 0 spatially flat

 $\kappa = -1$ hyperbolic

¹Moschella, Progr.Math.Phys.47:120 (2006)

static chart $\{t_s, r_s, \theta, \phi\}$

$$ds^{2} = (1 - \omega^{2} r_{s}^{2})dt_{s}^{2} - \frac{dr_{s}^{2}}{1 - \omega^{2} r_{s}^{2}} - r_{s}^{2}d\Omega_{2}^{2}$$

• ∂_{t_s} is a Killing vector

dS- Painlevé chart ${}^2\{t, r_s, \theta, \phi\}$

$$ds^{2} = (1 - \omega^{2} r_{s}^{2})dt^{2} + 2\omega r_{s}dr_{s}dt - dr_{s}^{2} - r_{s}^{2}d\Omega_{2}^{2}$$

- hybrid between static chart and FLRW chart
- time slices are euclidean spaces
- ∂_t is a Killing vector

'Natural' charts

- time and space on equal footing $Z^{\mu} = \frac{x^{\mu}}{f(x)}$
- basis for a so-called 'de Sitter-invariant special relativity':
- Beltrami chart ³: $f(x) = \sqrt{1 \omega^2(t^2 \vec{x}^2)}$ the "inertial coordinates" of dS
- stereographic chart ⁴: $f(x) = 1 \omega^2(t^2 \vec{x}^2)/4$ conformal to Minkowski spacetime
- NO symmetries are manifest

³Guo, Huang, Xu, Zhou, Mod.Phys.Lett.A19:1701 (2004)

⁴Aldrovandi, Almeida, Pereira, Class.Quantum Grav.24:1385 (2007)

Quantisation of fields on de Sitter spacetime

- gravity remains classical, only matter fields are quantized!
- dS background arena of interactions for the quantum theory (i.e. fields do NOT interact with the background)

Minkowski spacetime → deSitter Spacetime

- no. of symmetries remains the same! (10 Killing Vectors) give rise to conserved operators
- parameter introduced: ω (related to the cosmological constant). In the limit $\omega \to 0$, Minkowski quantities should be obtained
- the complexity of equations and their solutions increases
- first step: determine the free fields on the dS manifold

de Siter spacetime and modes Conserved operators

Defining the quantum modes Modes on the euclidean chart Spherical energy basis modes

The conserved operators

Scalar conserved operators:

$$X_{AB} = -ik^{\mu}_{AB}\partial_{\mu}$$

Hamiltonian operator:

$$H = \omega X_{04}$$

Momentum operator:

$$P_i = \omega(X_{i4} + X_{0i})$$

Angular momentum:

$$J_i = i \varepsilon_{ijk} X_{jk}$$

'Runge-Lenz-type' operator:

$$R_i = X_{i4}$$

de Siter spacetime and modes Conserved operators Defining the quantum modes Modes on the euclidean chart

The 'correct' momentum operator on dS

Minkowski limit:

$$\lim_{\omega \to 0} P_i = \lim_{\omega \to 0} \omega R_i = P_i^{\mathbb{M}} \equiv -i\partial_i$$

Commutation relations:

$$[P_i, P_i] = 0$$

$$[R_i,R_j]=i\varepsilon_{ijk}J_k$$

 P_i are good momentum operators Also:

$$[H,P_i]=i\omega P_i$$

• Energy and momentum can't be measured simultaneously on dS

• The field operator can be expanded as $\Phi(x)=\int da\,db\,dc\,\,f_{abc}(x)a(a,b,c)+f_{abc}^*(x)a^\dagger(a,b,c)$, and must satisfy:

Field equation- s=0 (Klein-Gordon equation)

$$\frac{1}{\sqrt{|g|}}\partial_{\mu}(\sqrt{|g|}g^{\mu\nu}\partial_{\nu}\Phi(x))-m^{2}\Phi(x)=0$$

AND

Eigenvalue equations for operators:

$$A\Phi(x) = a\Phi(x), \qquad B\Phi(x) = b\Phi(x), \qquad C\Phi(x) = c\Phi(x)$$

• The latter give the separating constants a physical meaning: quantities arising from measurements corresponding to a

C.S.C.O. (complete set of commuting operators)

$$\{\mathcal{E}, A, B, C\}$$

Spatially flat FLRW (euclidean) chart

Metric

$$ds^2 = dt^2 - e^{2\omega t} d\vec{x} \cdot d\vec{x}$$

Conserved operators:

spatial translations are manifest

$$P_i = -i\partial_i$$

 time translation accompanied by a spatial dilatation (in accordance with the concept that dS spacetime is expanding)

$$H = -i(\partial_t + x^i \partial_i)$$

• P_i do not commute with $H \Rightarrow$ two kinds of mode functions

Modes on the euclidean chart

De Sitter spacetime with $ds^2 = dt^2 - e^{2\omega t} d\vec{x} \cdot d\vec{x}$

-momentum-basis plane waves ⁵:

$$f_{\vec{p}}(t,\vec{x}) = \frac{1}{2} \sqrt{\frac{\pi}{\omega}} \frac{1}{(2\pi)^3} e^{-\frac{3\omega t}{2}} e^{\frac{i\pi v}{2}} H_{v}^{(1)} \left(\frac{p}{\omega} e^{-\omega t}\right) e^{i\vec{p}\cdot\vec{x}}$$

-energy-basis plane waves ⁶:

$$f_{E,\vec{n}}(t,\vec{x}) = \frac{1}{2} \sqrt{\frac{\omega}{2}} \frac{1}{(2\pi)^3} e^{-\frac{3\omega t}{2}} e^{\frac{i\pi v}{2}} \int_0^\infty \sqrt{s} H_v^{(1)}(se^{-\omega t}) e^{i\omega s \vec{n} \cdot \vec{x} - i\frac{E}{\omega} \ln s}$$

⁶Cotăescu, Crucean, Pop, Int.J.Mod.Phys.A23:2563 (2008)

⁵Nachtmann, Commun.math.Phys.6:1 (1967)

The 'Schrödinger Picture' formalism⁷

Apply a (possibly non-unitary) operator U(x)

$$\Phi(x) \to \Phi_S(x) = U(x)\Phi(x)$$

$$O \to O_S = U(x)OU(x)^{-1}$$

where

$$U(x) = e^{-\omega t(x^i \partial_i)}$$

such that

$$U(x)F(x^{i})U(x)^{-1} = F(e^{-\omega t}x^{i})$$

$$U(x)F(\partial_i)U(x)^{-1} = F(e^{\omega t}\partial_i)$$

⁷Cotăescu, arXiv:0708.0734 (2007)

Deriving the equation

Klein-Gordon eq. in $\{t, x, y, z\}$ chart

$$\left(\partial_t^2 + 3\omega\partial_t - e^{-2\omega t}\Delta_{x,y,z} + m^2\right)\Phi(t,\vec{x}) = 0$$

Natural Picture → Schrödinger Picture:

$$\partial_t \rightarrow \partial_t + \omega x^i \partial_i$$
 $\partial_i \rightarrow e^{\omega t} \partial_i$
 $\Delta \rightarrow e^{2\omega t} \Delta$
 $\Phi(t, \vec{x}) \rightarrow \Phi_S(t, \vec{x})$

Klein-Gordon eq. in $\{t, x, y, z\}$ chart - Schrödinger Picture

$$((\partial_t + \omega x^i \partial_i)^2 + 3\omega(\partial_t + \omega x^i \partial_i) - \Delta_{x,y,z} + m^2) \Phi_S(t, \vec{x}) = 0$$

$\{t,\vec{x}\} \rightarrow \{t,r,\theta,\phi\}$:

$$x^{i}\partial_{i} = r\partial_{r}$$

$$\Delta_{x,y,z} = \Delta_{r,\theta,\phi} = \partial_{r}^{2} + \frac{2}{r}\partial_{r} + \frac{\Delta_{\theta,\phi}}{r^{2}}$$

Klein-Gordon eq. in $\{t, r, \theta, \phi\}$ chart - Schrödinger Picture

$$\left((\partial_t + \omega r \partial_r)^2 + 3\omega(\partial_t + \omega r \partial_r) - \partial_r^2 - \frac{2}{r}\partial_r - \frac{\Delta_{\theta,\phi}}{r^2} + m^2\right)\Phi_S(t,r,\theta,\phi) = 0$$

Solution (back in Natural Picture)

$$f_{E,l,m_l}(t,r,\theta,\phi) = Ne^{-iEt}(\omega r e^{\omega t})^l {}_2F_1(\alpha,\beta;l+3/2;\omega^2 r^2 e^{2\omega t})Y_{l,m_l}(\theta,\phi)$$

Solution- in integral representation (via Hankel transform)⁸

$$\begin{split} f_{E,l,m_l}(t,r,\theta,\phi) &= N \times 2^{-i\epsilon} \frac{i\pi}{2} e^{\frac{i\pi v}{2}} \frac{\Gamma(l+3/2)}{\Gamma(\alpha)\Gamma(\beta)} Y_{l,m_l}(\theta,\phi) e^{-\frac{3\omega t}{2}} \frac{1}{\sqrt{\omega r}} \times \\ &\times \int_0^\infty s^{-i\epsilon} H_{\mathbf{v}}^{(1)}(se^{-\omega t}) J_{l+1/2}(\omega rs) ds \end{split}$$

Scalar Product (in spherical coordinates)

$$\langle f_{E,l,m_l},f_{E',l',m_l'}\rangle=i\int_0^\infty\!\!d^3r\;r^2\!\int d\Omega e^{3\omega t}f_{E,l,m_l}^*(t,r,\theta,\phi) \stackrel{\leftrightarrow}{\partial}_{\rm t}f_{E',l',m_l'}(t,r,\theta,\phi)$$

$$N = \sqrt{\frac{\omega}{2}} \frac{1}{\pi} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(l+3/2)}$$

Concluding remarks

- the limiting case $\omega \to 0$ can't be evaluated for the k=0 FLRW chart quantum modes, but that's OK: modes are not observable quantities
- on a chart there can be more than one useful mode-expansion of the field operator
- while the energy-basis modes are different from the momentum-basis ones, there is still no Bogolyubov mixing (vacuum is stable under transf. from one set to another)
- the most useful charts for computing quatum modes are the ones where symmetries are manifest
- spatially flat FLRW chart- translational symmetries are manifest $\Phi(x) \sim e^{i\vec{p}\cdot\vec{x}}$ use of free modes in a QFT with perturbative Feynman-Dyson formalism ⁹

Thank you for your attention!