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Abstract. Unitary spaces, transformations, matrices and operators are of fun-

damental importance in quantum mechanics. In quantum mechanics symmetry

transformations are induced by unitary. This is the content of the well known

Wigner theorem. In this paper we determine those unitary operators U are either

parallel with or orthogonal to . We give some examples of simple unitary trans-

forms, or ”quantum gates.” A quantum operation which copied states would be

very useful. For example, we considered the following problem in Homework 1:

Given an unknown quantum state, either and , use a measurement to guess which

one. If and are not orthogonal, then no measurement perfectly distinguishes them,

and we always have some constant probability of error. However, if we could make

many copies of the unknown state, then we could repeat the optimal measurement

many times, and make the probability of error arbitrarily small. The no cloning

theorem says that this isn’t physically possible. Only sets of mutually orthogonal

states can be copied by a single unitary operator.

1. Introduction

Unitary spaces, transformations, matrices and operators are of fundamental im-

portance in quantum mechanics. In quantum mechanics symmetry transformations

are induced by unitary. This is the content of the well known Wigner theorem. In

this paper we determine those unitary operators U are either parallel with or or-

thogonal to φ. We give some examples of simple unitary transforms, or ”quantum
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gates.” A quantum operation which copied states would be very useful. For example,

we considered the following problem in Homework 1: Given an unknown quantum

state, either |α and |β , use a measurement to guess which one. If |α and |β are

not orthogonal, then no measurement perfectly distinguishes them, and we always

have some constant probability of error. However, if we could make many copies of

the unknown state, then we could repeat the optimal measurement many times, and

make the probability of error arbitrarily small. The no cloning theorem says that

this isn’t physically possible. Only sets of mutually orthogonal states can be copied

by a single unitary operator. Time evolution is the change of state brought about

by the passage of time, applicable to systems with internal state (also called state

full systems). In this formulation, time is not required to be a continuous parameter,

but may be discrete or even finite. In classical physics, time evolution of a collection

of rigid bodies is governed by the principles of classical mechanics. In their most

rudimentary form, these principles express the relationship between forces acting on

the bodies and their acceleration given by Newton’s laws of motion. These princi-

ples can also be equivalently expressed more abstractly by Hamiltonian mechanics or

Lagrangian mechanics. In quantum mechanics, the state of any physical system is

represented by a vector. Suppose that |α is such a vector. Time evolution is the pro-

cess |α → e−iHt|α where H is the Hamiltonian operator. You can think of the state

vector as a representation of all properties of the system, in the past, present, and

future. The effect of the time evolution operator is then to transform our state vector

to the state vector that another observer would use to describe the same system.

This would be an observer whose clock shows zero t seconds after ours does.

2. Unitary Operators and Quantum Gates

2.1. Unitary Operators. A postulate of quantum physics is that quantum evolu-

tion is unitary. That is, if we have some arbitrary quantum system U that takes as
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input a state |ϕ > and outputs a different state U |ϕ >, then we can describe U as a

unitary linear transformation, defined as follows.

If U is any linear transformation, the adjoint of U , denoted U †, is defined by (U−→v ,−→w ) =

(−→v , U †−→w ). In a basis, U † is the conjugate transpose of U ; for example, for an operator

on C2,

U =

 a b

c d

 ⇒ U † =

 ā c̄

b̄ d̄

 .

We say that U is unitary if U † = U−1. For example, rotations and reflections are

unitary. Also, the composition of two unitary transformations is also unitary (Proof:

U, V unitary, then (UV )† = V †U † = V −1U−1 = (UV )−1.

Some properties of a unitary transformation U :

• The rows of U form an orthonormal basis.

• The columns of U form an orthonormal basis.

• U preserves inner products, i.e. (−→v ,−→w ) = (U−→v , U−→w ). Indeed, (U−→v , U−→w ) =

(U | > v)†U |w >=< v|U †U |w >=< v,w >. Therefore, U preserves norms and

angles (up to sign).

• The eigenvalues of U are all of the form eiθ(since U is length-preserving, i.e.,

(−→v ,−→v ) = (U−→v , U−→v )).

• U can be diagonalized into the form


eiθ1 0 · · · 0

0
. . . . . . 0

...
. . . . . .

...

0 · · · 0 eiθd


2.2. Quantum Gates. We give some examples of simple unitary transforms, or

quantum gates. Some quantum gates with one qubit:
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• Hadamard Gate. Can be viewed as a reflection around π/8, or a rotation

around π/4 followed by a reflection.

H =
1√
2

 1 1

1 −1


The Hadamard Gate is one of the most important gates. Note that H† = H(

since H is real and symmetric) and H2 = I.

• Rotation Gate. This rotates the plane by θ.

U =

 cosθ −sinθ

sinθ cosθ


• NOT Gate. This flips a bit from 0 to 1 and vice versa.

NOT =

 0 1

1 0


• Phase Flip.

Z =

 1 0

0 −1


The phase flip is a NOT gate acting in the |+ >= 1√

2
(|0 > +|1 >), |− >=

1√
2
(|0 > −|1 >) basis. Indeed,Z|+ >= |> and Z|> = |+ >.

And a two-qubit quantum gate:

• Controlled Not (CNOT).

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


The first bit of a CNOT gate is the control bit; the second is the target bit.

The control bit never changes, while the target bit flips if and only if the
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Figure 1.

control bit is 1. The CNOT gate is usually drawn as follows, with the control

bit on top and the target bit on the bottom:

2.3. Tensor product of operators. Suppose |v > and |w > are unentangled states

on Cm m and Cn, respectively. The state of the combined system is |v > ⊗|w > on

Cmn. If the unitary operator A is applied to the first subsystem, and B to the second

subsystem, the combined state becomes A|v > ⊗B|w >.

In general, the two subsystems will be entangled with each other, so the combined

state is not a tensor product state. We can still apply A to the first subsystem and

B to the second subsystem. This gives the operator A⊗B on the combined system,

defined on entangled states by linearly extending its action on unentangled states. Let

|e1 >, ..., |em > be a basis for the second subsystem, and write B =
n∑

k,l=1

bkl|fk >< fl|.

Then a basis for the combined system is |ei > ⊗|fj >, for i = 1, ...,m and j = 1, ..., n.

The operator A⊗B is

A⊗B = (
∑
ij

aij|ei >< ej|)⊗ (
∑
kl

bkl|fk >< fl|)

=
∑
ijkl

aijbkl|ei >< ej| ⊗ |fk >< fl|

=
∑
ijkl

aijbkl(|ei > ⊗|fk >)(< ej|⊗ < fl|).

Therefore the (i, k), (j, l)th element of A ⊗ B is aijbkl. If we order the basis |ei >

⊗|fj > lexicographically, then the matrix for A⊗B is
a11B a12B · · ·

a21B a22B · · ·
...

...
. . .

 ;
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in the i, jth subblock, we multiply aij by the matrix for B.

3. No cloning theorem

A quantum operation which copied states would be very useful. For example, we

considered the following problem in Homework 1: Given an unknown quantum state,

either |ϕ > or |ψ >, use a measurement to guess which one. If |ϕ > and |ψ > are

not orthogonal, then no measurement perfectly distinguishes them, and we always

have some constant probability of error. However, if we could make many copies of

the unknown state, then we could repeat the optimal measurement many times, and

make the probability of error arbitrarily small. The no cloning theorem says that this

is not physically possible. Only sets of mutually orthogonal states can be copied by

a single unitary operator.

Theorem 3.1. No Cloning Theorem. Assume we have a unitary operator U and two

quantum states |ϕ > and |ψ > which U copies, i.e.,

|ϕ > ⊗|0 >−→U |ϕ > ⊗|ϕ >

|ψ > ⊗|0 >−→U |ψ > ⊗|ψ > .

Then < ϕ|ψ > is o or 1.

Proof. < ϕ|ψ >= (< ϕ|⊗ < 0|)(|ψ > ⊗|0 >) = (< ϕ|⊗ < ϕ|)(|ψ > ⊗|ψ >) =<

ϕ|ψ >2. In the second equality we used the fact that U , being unitary, preserves

inner products. �

4. Superdense Coding

Suppose Alice and Bob have a quantum communications channel, over which Alice

can send qubits to Bob. However, Alice just wants to send a regular classical letter

(sequence of bits). One way to send her message is to encode a 0 as |0 > and a 1
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as |1 >. But can she do better than sending as many qubits as bits in her message?

Intuitively, since quantum systems are more complex than classical systems, they

can hold informationso maybe Alice can do better. But quantum information is hard

to access; when you measure a quantum state, it looks classicalso maybe she cant.

In fact, if Alice and Bob share a Bell state, then she can send two classical bits

of information using only one qubit. Say Alice and Bob share |Φ+ >= 1√
2
(|00 >

+|11 >). Depending on the message Alice wants to send, she applies a gate to her

qubit, then sends it to Bob. If Alice wants to send 00, then she does nothing to

her qubit, just sends it to Bob. If Alice wants to send 01, she applies the phase

flip Z to her qubit, changing the quantum state to 1√
2
(|00 > −|11 >) = Φ− >. To

send 10, she applies the NOT gate, giving 1√
2
(|10 > +|01 >) = Ψ+ >. To send 11,

she applies both NOT and Z, giving 1√
2
(|01 > −|10 >) = Φ− >. After receiving

the qubit from Alice, Bob has one of the four mutually orthogonal Bell states. He

can therefore apply a measurement to distinguish between them with certainty, and

determine Alices message. Note that Alice really did use two qubits total to send the

two classical bits. After all, Alice and Bob somehow had to start with a shared Bell

state. However, the first qubitBobs half of the Bell statecould have been sent well

before Alice had decided what message she wanted to send. Perhaps only much later

did she decide on her message and send over the second qubit. One can show that

it is not possible to do any better. Two qubits are necessary to send two classical

bits. Superdense coding allows half the qubits to be sent before the message has been

chosen.

5. Symmetries in quantum mechanics

Whenever possible we follow the notation and terminology of [4].

5.1. Repetition and Notation. A quantum mechanical system is a pair (H, H)

whose most important properties are as follows.
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• H is a separable Hilbert space over C.

• Elements f ∈ H are considered as states of the system. Two elements f, g ∈ H

are physically equivalent if there is C ∈ C \ {0} such that f = C · g. In

other words, the states may be considered as elements of the projective space

P := P(H). Let [·] : H → P, f 7→ [f ] be the canonical projection map (which

is surjective).

• For two states [f ], [g] ∈ P, the (well-defined) quantity

δ([f ], [g]) := |<f,g>|2
||f ||2||g||2

is considered as the transition probability from one state to the other.

• Observables are selfadjoint (unbounded) operators in H.

• H(the Hamiltonian) is an observable which governs the time evolution of a

state ϕ = [f ] = [ft] ∈ P via the differential equation(Schrödinger equation):

(1) i}
∂f

∂t
= H(f)

We say that ϕ satisfies the Schrödinger equation if f ∈ H such that [f ] =

ϕ ∈ P does. By linearity, this is independent of the choice of a representative

f ∈ [·]−1(ϕ).

This list is not complete. For details, consult [7, Sec. 3.1] and other books on

quantum mechanics.

5.2. Symmetry Transformations. A symmetry transformation of a quantum me-

chanical system is a map that leaves the physics invariant. Considering the properties

listed above, this amounts to a map that

(1) transforms states into states and may be inverted.

(2) leaves the transition probability from one state to another invariant

(3) does not change the role of the HamiltonianH: Any solution of the Schrödinger

equations should map to another solution.
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The first two items are made precise by the following definition, that we shall need

later.

Definition 5.1. Denote by Aut(P) the set of bijective functions T : P → P such that

δ(ϕ, ψ) = δ(Tϕ, Tψ).

It is easy to see that Aut(P) is a group. The following definition includes the third

item.

Definition 5.2. A symmetry transformation of a quantum mechanical system (H, H)

is an element T ∈ Aut(P) such that for every ϕ ∈ P that satisfies the Schrödinger

equation 1, the transformed state Tϕ ∈ P satisfies the Schrödinger equation, too.

Example 5.3. Consider the Hilbert space H := L2(R3,C) with scalar product∫
R3 f(x) · g(x)dx

and Hamiltonian H := − }2
2m

△. One can show that TR : P → P, which is defined by

TR([f ]) := [f(R−1·] for f ∈ H is indeed a symmetry transformation, where R ∈ SO(3)

is a (fixed) rotation.

5.3. Unitary Symmetry Groups. Although the projective space P and notH itself

should be regarded as the space of states (see above), it is usually more convenient

for calculations to deal with elements f ∈ H instead of [f ] ∈ P, often with the

assumption that f be normed(i.e. ||f || = 1). The rest of this talk deals with how

quantum symmetries may be phrased in terms of H.

Definition 5.4. Denote by U(H) the set of C-linear bijective functions R : H → H

such that the scalar product of H is left invariant: < f, g >=< Rf,Rg >.

It is easy to see that an R ∈ U(H) leaves the transition probability invariant:

([f ], [g]) = δ([Uf ], [Ug])

for all f, g ∈ H. Hence to a unitary transformation R ∈ U(H) is canonically associated
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a well-defined map [R] ∈ Aut(P) by prescribing [R]([f ]) := [Rf ], which yields a

projection map [·] : U(H → Aut(P), R 7→ [R] : P → P.

Lemma 5.5. U(H) is a topological group with respect to the strong topology, and

[·] : U(H) → Aut(P) is a continuous homomorphism.

Proof. Consult [8, Chp. 3], for details. �

Therefore, and since unitary transformations leave the transition probability in-

variant, one is lead to consider U(H) to be corresponding to Aut(P).

Definition 5.6. Let (H, H) be a quantum mechanical system and G be a topological

group. Then G is called a symmetry group of the system if there is a projective

representation T : G→ Aut(P) such that Tg is a symmetry transformation for every

g ∈ G.

Definition 5.7. A unitary symmetry transformation of a quantum mechanical sys-

tem (H, H) is an element R ∈ U(H) such that for every f ∈ H that satisfies the

Schrödinger equation 1, the transformed state Rf ∈ H satisfies the Schrödinger

equation, too.

The following lemma provides another (stronger) condition which is often called a

symmetry condition in the literature (cf. e.g. [7, Sec. 3.3]).

Lemma 5.8. Let R ∈ U(H) be such that R commutes with the Hamiltonian:

R ◦H = H ◦R, then R is a unitary symmetry transformation.

Proof. Let f ∈ H a solution of the Schrödinger equation 1. Then

H(Rf) = RH(f) = Ri}∂f
∂t

= i}∂(Rf)
∂t

and Rf is a solution, too. �

Definition 5.9. Let G be a topological group and H as above. Then a unitary

representation of G in H is a function R : G→ U(H), g 7→ Rg : H → H
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which is a continuous group homomorphism (wrt. the strong topology on U(H)),

i.e.

• R preserves the group structure: Rg·h = Rg ◦Rh.

• For all f ∈ H, the induced function G→ H, g 7→ Rg(f) is continuous.

Definition 5.10. Let (H, H) be a quantum mechanical system andG be a topological

group. Then G is called a unitary symmetry group of the system if there is a unitary

representation R : G→ U(H) such that Rg is a unitary symmetry transformation for

every g ∈ G.

Lemma 5.11. Let G with R : G → U(H) be a unitary symmetry group. Then

concatenation with the canonical projection T := [·] ◦ R : G → Aut(P), yields a

symmetry group (G, T ) in the sense of Definition 5.6.

Proof. We have seen above (below Definition 5.4) that for every g ∈ G indeed Tg ∈

Aut(P). Now since for all f ∈ H, the map G → H, g 7→ Rg(f) is continuous

and also the map [·] is continuous (cf. Lemma. 5.5), it follows that also G → P,

g 7→ [·] ◦ Rg(f) = Tg([f ]) is continuous. T is a homomorphism since Rgh = RgRh

implies (for every f ∈ H)

Tgh([f ]) = [Rgh(f)] = [Rg(Rh(f))] = Tg([Rh(f)]) = YgTh([f ])

and therefore Tgh = TgTh. For all g ∈ G, Rg is a unitary symmetry transformation,

that is any solution f of the Schrödinger equation 1 is mapped to a solution Rgf . Since

Tg([f ]) = [Rgf ], the analogous statement is true for Tg and thus Tg is a symmetry

transformation. �

Groeger [4] studied the converse question:

Question 5.12. Let G with T : G→ Aut(P) be a symmetry group. Does there exist a

unitary lift, i.e. a unitary symmetry group (G,R : G→ U(H)) such that T = [·] ◦R?
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