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Abstract

We derive an analytical expression of a shadow size as a function of a charge in
the Reissner – Nordström (RN) metric. Using the derived expression we consider
shadows for negative tidal charges and charges corresponding to naked singulari-
ties q = Q2/M2 > 1, where Q and M are black hole charge and mass, respectively.
An introduction of a negative tidal charge q can describes black hole solutions in
theories with extra dimensions, so following the approach we consider an oppor-
tunity to extend RN metric to negative Q2, while for the standard RN metric
Q2 is always non-negative. We found that for q > 9/8 black hole shadows disap-
pear. Significant tidal charges q = −6.4 are not consistent with observations of a
minimal spot size at the Galactic Center observed in mm-band, moreover, these
observations demonstrate that in comparison with the Schwarzschild black hole a
Reissner – Nordström black hole with a significant charge q ≈ 1 provides a better
fit of recent observational data for the black hole at the Galactic Center.

1. Introduction

Theories with extra dimensions admit astrophysical objects (supermassive
black holes in particular) which are rather different from standard ones.
Tests have been proposed when it would be possible to discover signatures
of extra dimensions in supermassive black holes since the gravitational field
may be different from the standard one in the GR approach. So, gravita-
tional lensing features are different for alternative gravity theories with
extra dimensions and general relativity.
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Recently, Bin-Nun [1, 2, 3] discussed an opportunity that the black hole at
the Galactic Center is described by the tidal Reissner– Nordström metric
which may be admitted by the Randall–Sundrum II braneworld scenario
[4]. Bin-Nun suggested an opportunity of evaluating the black hole met-
ric analyzing (retro-)lensing of bright stars around the black hole in the
Galactic Center. Doeleman et al. evaluated a size of the smallest spot
for the black hole at the Galactic Center with VLBI technique in mm-
band [5] (see, constraints done from previous observations [6]). Theoretical
studies showed that the size of the smallest spot near a black hole prac-
tically coincides with shadow size because the spot is the envelope of the
shadow [7, 8, 9]. Measurements of the shadow size around the black hole
may help to evaluate parameters of black hole metric [8, 9]. We derive
an analytic expression for the black hole shadow size as a function of the
tidal charge for the Reissner– Nordström metric. We conclude that ob-
servational data concerning shadow size measurements are not consistent
with significant negative charges, in particular, the significant tidal charge
q = Q/M2 = −6.4 discussed in [1, 2, 3], where the author used a little bit
different notations, namely q′ = q/4, is practically ruled out with a very
high probability (the tidal charge is roughly speaking is far beyond 9σ con-
fidence level). We also show a smaller shadow sizes in respect to estimates
obtained with the Schwarzschild black hole model can be explained with
the Reissner – Nordström metric with a significant charge. It was found a
critical q value for shadow existence, namely for q ≤ 9/8, Reissner – Nord-
ström black holes have shadows while for q > 9/8 the shadows do not exist.
Interestingly, the same critical value is responsible for a qualitative different
behavior of quasinormal modes for the scattering [10] and for existence of
circular orbits of neutral test particles [11].

Now there are two basic observational techniques to investigate a gravita-
tional potential at the Galactic Center, namely, a) monitoring the orbits of
bright stars near the Galactic Center to reconstruct a gravitational poten-
tial [12] (see also a discussion about an opportunity to evaluate black hole
dark matter parameters in [13] and an opportunity to constrain some class
of alternative theory of gravity [14]); b) in mm-band with VLBI-technique
measuring a size and a shape of shadows around black hole giving an al-
ternative possibility to evaluate black hole parameters. The formation of
retro-lensing images (also known as mirage, shadows or ”faces” in the lit-
erature) due to the strong gravitational field effects nearby black holes has
been investigated by several authors [15, 16, 8, 9].

Another option to test a gravity in the strong field approximation is analysis
of relativistic line shape as it was shown in [17]. Later on, such signatures
of the Fe Kα-line have been found in the active galaxy MCG-6-30-15 [18].
Results of our simulations of iron Kα line formation are given in [19] (where
we used our approach [21]), see also [22] for a more recent review of the
subject.

As J. A. Wheeler coined ”Black holes have no hair”: it means that a black
hole is characterized by only three parameters (”hairs”), its mass M , an-
gular momentum J and charge Q (see, e.g. [23, 24], or [25] for a more
recent review). Therefore, in principle, charged black holes can be formed,
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although astrophysical conditions that lead to their formation may look
rather problematic. Nevertheless, one could not claim that their existence
is forbidden by theoretical or observational arguments. Moreover, we will
show below that observations give a hint about an existence of a significant
charge, but its origin is not clear at the moment.

Charged black holes are also object of intensive studies in quantum grav-
ity, since a static, spherically symmetrical solution of Yang-Mills-Einstein
equations with fairly natural requirements on asymptotic behavior of the
solutions gives a Reissner-Nordström metric [26]. The Reissner - Nord-
ström metric thus describes a spherically symmetric black hole with a color
charge (and (or) a magnetic monopole). Later on, color charges have been
found for rotating black holes as well [27].

2. Basic Equations

The expression for the Reissner - Nordström metric in natural units (G =
c = 1) has the form

ds2 = −
(
1− 2M

r
+

Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

dr2+ r2(dθ2 + sin2θdϕ2).

(1)
Applying the Hamilton-Jacobi method to the problem of geodesics in the
Reissner - Nordström metric, the motion of a test particle in the r-coordinate
can be described by following equation (see, for example, [23])

r4(dr/dλ)2 = R(r), (2)

where

R(r) = P 2(r)−∆(µ2r2 + L2),

P (r) = Er2 − eQr, (3)

∆ = r2 − 2Mr +Q2.

Here, the constants µ,E,L and e are associated with the particle, i.e. µ is
its mass, E is energy at infinity, L is its angular momentum at infinity and
e is the particle’s charge.

We shall consider the motion of uncharged particles (e = 0) below. In this
case, the expression for the polynomial R(r) takes the form

R(r) = (E2 − µ2)r4 + 2Mµr3 − (Q2µ2 + L2)r2 + 2ML2r −Q2L2. (4)

Depending on the multiplicities of the roots of the polynomial R(r), we
can have three types of motion in the r - coordinate [28]. In particular, by

defining r+ = 1 +
√
1−Q2, we have:

(1) if the polynomial R(r) has no roots for r ≥ r+, a test particle is captured
by the black hole;
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(2) if R(r) has roots and (∂R/∂r)(rmax) ̸= 0 with rmax > r+ (rmax is the
maximal root), a particle is scattered after approaching the black hole;
(3) if R(r) has a root and R(rmax) = (∂R/∂r)(rmax) = 0, the particle now
takes an infinite proper time to approach the surface r = const.

If we are considering a photon (µ = 0), its motion in the r-coordinate

depends on the root multiplicity of the polynomial R̂(r̂)

R̂(r̂) = R(r)/(M4E2) = r̂4 − ξ2r̂2 + 2ξ2r̂ − Q̂2ξ2. (5)

where r̂ = r/M, ξ = L/(Me) and Q̂ = Q/M.

One could see from Eq. (5) and Eqs. (3) as well that the black hole charge
may influence substantially the photon motion at small radii (r ≈ 1), while
the charge effect is almost negligible at large radial coordinates of photon
trajectories (r >> 1). In the last case we should keep in mind that the
charge may cause only small corrections on photon motion.

3. Derivation of shadow size as a function of charge

Let us consider the problem of the capture cross section of a photon by a
charged black hole. It is clear that the critical value of the impact parameter
for a photon to be captured by a Reissner - Nordström black hole depends
on the multiplicity root condition of the polynomial R(r). This require-
ment is equivalent to the vanishing discriminant condition [31]. To find
the critical value of impact parameter for Schwarzschild and RN metrics
the condition has been used for corresponding cubic and quartic equations
[32, 33, 34]. In particular, it was shown that for these cases the vanishing
discriminant condition approach is more powerful in comparison with the
procedure excluding rmax from the following system

R(rmax) = 0, (6)

∂R

∂r
(rmax) = 0, (7)

as it was done, for example, by Chandrasekhar [29] (and earlier by Darwin
[30]) to solve similar problems, because rmax is automatically excluded in
the condition for vanishing discriminant.

Introducing the notation ξ2 = l,Q2 = q, we obtain

R(r) = r4 − lr2 + 2lr − ql. (8)

We remind basic algebraic definitions and relations.

If we consider an arbitrary polynomial f(X) with degree n

f(X) = Xn + a1X
n−1 + ...+ an−1X + an, (9)
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the elementary symmetric polynomials sk have the following form, where
X1, ...Xn are roots of the polynomial f(X) [31]

sk(X1, ...Xn) =
∑

16i1<i2<...<ik6n

Xi1Xi2 ...Xik , (10)

where k = 1, 2, ..., n.

The symmetrical k-power sum polynomial pk have the following expression
[31]

pk(X1, ...Xn) = Xk
1 +Xk

2 + ...+Xn
n , for k ≥ 0. (11)

To express pk through sk one can use Newton’s equations [31]

pk−pk−1s1 + ...+ (−1)k−1p1sk−1 +(−1)kksk = 0, for 16k6 n; (12)

pk−pk−1s1 + ...+ (−1)n−1pk−n+1sn−1 +(−1)npk−nsn = 0, for k > n. (13)

We introduce the following polynomial

∆n(X1, ...Xn) =
∏

16i<j6n

(Xi −Xj), (14)

which can be represented as the Vandermonde determinant

∆n(X1, ...Xn) =

∣∣∣∣∣∣∣
1 1 ... 1
X1 X2 ... Xn

... ... ... ...
Xn−1

1 Xn−1
2 ... Xn−1

n

∣∣∣∣∣∣∣ . (15)

According to the discriminant Dis definition we have the Dis(s1, ..., sn)
polynomial

Dis(s1, ..., sn) = ∆2
n(X1, ...Xn) =

∏
16i<j6n

(Xi −Xj)
2, (16)

one can find [31]

Dis(s1, ...sn) =

∣∣∣∣∣∣∣∣∣
n p1 p2 ... pn−1

p1 p2 p3 ... pn
p2 p3 p4 ... pn+1

... ... ... ... ...
pn−1 pn pn+1 ... p2n−2

∣∣∣∣∣∣∣∣∣ . (17)

Clearly, that the vanishing discriminant condition is equivalent to an exis-
tence of multiple roots among roots X1, ...Xn.

We apply this technique for the quartic polynomial R(r) in Eq. (8).
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So that the symmetric k-power polynomials for n = 4 have the form

pk = X1
k +X2

k +X3
k +X4

k, k ≥ 0. (18)

The symmetric elementary polynomials for n = 4 have the form

s1 = X1 +X2 +X3 +X4,

s2 = X1X2 +X1X3 +X1X4 +X2X3 +X2X4 +X3X4,

s3 = X1X2X3 +X2X3X4 +X2X3X4, (19)

s4 = X1X2X3X4.

We calculate the discriminant of the family X1, X2, X3, X4

Dis(s1, s2, s3, s4) =

∣∣∣∣∣∣∣
1 1 1 1
X1 X2 X3 X4

X1
2 X2

2 X3
2 X4

2

X1
3 X2

3 X3
3 X4

3

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
4 p1 p2 p3
p1 p2 p3 p4
p2 p3 p4 p5
p3 p4 p5 p6

∣∣∣∣∣∣∣ (20)

Expressing the polynomials pk(1 ≤ k ≤ 6) in terms of the polynomials
sk(1 ≤ k ≤ 4) and using Newton’s equations we calculate the polynomials
and discriminant of the family X1, X2, X3, X4 in roots of the polynomial
R(r); we obtain

p1 = s1 = 0, p2 = −2s2, p3 = 3s3,

p4 = 2s2
2 − 4s4, p5 = −5s3s2, (21)

p6 = −2s2
3 + 3s3

2 + 6s4s2,

where s1 = 0, s2 = −l, s3 = −2l, s4 = −ql, corresponding to the polynomial
R(r) in Eq. (8).

The discriminant Dis of the polynomial R(r) has the form:

Dis(s1, s2, s3, s4) =

∣∣∣∣∣∣∣
4 0 2l −6l
0 2l −6l 2l(l + 2q)
2l −6l 2l(l + 2q) −10l2

−6l 2l(l + 2q) −10l2 2l2(l + 6 + 3q)

∣∣∣∣∣∣∣ =
= 16l3[l2(1− q) + l(−8q2 + 36q − 27)− 16q3]. (22)

The polynomial R(r) thus has a multiple root if and only if

l3[l2(1− q) + l(−8q2 + 36q − 27)− 16q3] = 0. (23)

Excluding the case l = 0, which corresponds to a multiple root at r = 0, we
find that the polynomial R(r) has a multiple root for r ≥ r+ if and only if

l2(1− q) + l(−8q2 + 36q − 27)− 16q3 = 0. (24)
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If q = 0, we obtain the well-known result for a Schwarzschild black hole
[23, 24, 35], l = 27, or Lcr = 3

√
3. If q = 1, then l = 16, or Lcr = 4, which

also corresponds to numerical results given in [36].

The photon capture cross section for an extreme charged black hole turns
out to be considerably smaller than the capture cross section of a Schwarzschild
black hole. The critical value of the impact parameter, characterizing the
capture cross section for a RN black hole, is determined by the equation

lcr =
(8q2 − 36q + 27) +

√
D1

2(1− q)
, (25)

where D1 = (8q2 − 36q + 27)2 + 64q3(1 − q) = −512

(
q − 9

8

)
. It is clear

from the last relation that there are circular unstable photon orbits only

for q ≤ 9

8
(see also results in [11] about the same critical value).

Substituting Eq.(25) into the expression for the coefficients of the polyno-
mial R(r) it is easy to calculate the radius of the unstable circular photon
orbit (which is the same as the minimum periastron distance). The or-
bit of a photon moving from infinity with the critical impact parameter,
determined in accordance with Eq.(25) spirals into circular orbit.

To find a radius of photon unstable orbit we will solve Eq. (7) substituting
lcr in the relation. From trigonometric formula for roots of cubic equation
we have

rcrit = 2

√
lcr
6

cos
α

3
, (26)

where

cosα = −
√

27

2lcr
, (27)

As it was explained in [9] this leads to the formation of shadows described
by the critical value of Lcr or, in other words, in the spherically symmetric
case, shadows are circles with radii Lcr. Therefore, measuring the shadow
size, one could evaluate the black hole charge in black hole mass units M .

In Fig. 1 shadow size is given as a function of charge (including possible
tidal charge with a negative q and super-extreme charge q > 1). In Fig. 2
radius of last unstable orbit for photons as a function of q is given.

4. Consequences

4.1. A disappearance of shadows for naked singularities

In spite of the cosmic censorship hypothesis [39] that a singularity has to
be shielded by a horizon, properties of naked singularities are a subject
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Figure 1: Shadow (mirage) sizes M units as a function of q.

Figure 2: Radius of the last circular unstable photons orbit in M units as
a function of q.
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of intensive theoretical studies. As usual spherical symmetrical cases are
more easier for analysis and RN metrics with super extreme charge q > 1
are investigated in a number of papers, see, for instance [40] and references
therein.

So, if we assume that q > 1, we can see from Eq. (25) that for q ≤ 9/8
we have shadows, while for q > 9/8 the shadows do not exist. For these
charges (q > 9/8) incoming photons always scattering by black holes for
l ̸= 0 because the polynomial R(r) has no multiple roots but it has a single
positive root (it means scattering) since for great positive r we have R(r) >
0 while R(0) < 0. The degenerate case of radial trajectories of photons
(l = 0) can be ignored as the case with ”zero measure” or the structural
unstable case using the Poincare – Pontryagin – Andronov – Anosov –
Arnold terminology [37]. It means that in any small vicinity a behavior of
other geodesics from the radial ones is qualitatively different, therefore, such
objects can not be observed in nature. Therefore, shadows exist only for
q ≤ 9/8. So, q = 9/8 is critical value which is characterized ”catastrophe”
[38] or the qualitatively different behavior of the system (appearance and
disappearance of shadows).

For the critical q = 9/8 we have the smallest shadow with l = 27/2 and
a shadow size ξ =

√
13.5 ≈ 3.674 (in M units) or 84.38 µas in diameter

for the black hole at the Galactic Center. For this impact parameter we
have corresponding circular unstable orbit for photons with r = 3/2 (in M
units).

4.2. Observational constraints on a charge of the black hole at
the Galactic Center

If we adopt the distance toward the Galactic Center d∗ = 8.3 kpc and mass
of the black hole MBH = 4.4∗106M⊙ [41], then we have the angle 10.45 µas

for the corresponding Schwarzschild radius Rg = 2.95∗MBH

M⊙
∗105 cm, so a

shadow size for the Schwarzschild black hole is around 54.2 µas, for a black
hole with a tidal charge (q = −6.4) suggested by Bin-Nun [1, 2, 3] a shadow
size is about 88.1 µas, while for the extreme charge (q = 1) and critical
charge (q = 9/8) the shadow sizes are 41.8 µas and 38.4 µas, respectively.

4.3. Comparison with observations

A couple of year ago Doeleman et al. [5] claimed that intrinsic diameter of
Sgr A∗ is 37+16

−10 µas at the 3 σ confidence level. If we believe in GR and
the central object is a black hole, then we have to conclude that a shadow
is practically coincides with the intrinsic diameter, so in spite of the fact
that a Schwarzschild black hole is marginally consistent with observations,
a Reissner – Nordström black hole provides much better fit of a shadow
size, while a black hole with a significant tidal charge (q = −6.4) is out of
9.6 σ level interval. Later on, an accuracy of intrinsic size measurements
was significantly improved, so Fish et al. [42] gave 41.3+5.4

−4.3 µas (at 3 σ
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level) on day 95, 44.4+3.0
−3.0 µas on day 96 and 42.6+3.1

−2.9 µas on day 97, so a
tidal charge (q = −6.4) is out of 26 σ level for day 95 and even less probable
for other observations.

The black hole in the elliptical galaxy M87 looks also perspective to evaluate
shadow size [43] (probably even its shape in the future to estimate a black
hole spin) because the distance toward the galaxy is 16±0.6 Mpc [44], black
hole mass is MM87(6.2± 0.4)× 109M⊙ [45], so that an angle (7.3± 0.5)µas
corresponds to the Schwarzschild radius [43], so the angle is comparable
with the corresponding value considered earlier for our Galactic Center case.
In paper [43] it was reported that smallest shadow size is 5.5 ± 0.4RSCH

with 1 σ errors (where RSCH = 2GMM87/c
2), so that at the moment the

shadow size is consistent with the Schwarzschild metric for the object.

5. Conclusions

Based on observations [5, 42] one can say that between for the Schwarzschild
black hole model we have tensions between evaluations of black hole mass
done with observations of bright star orbits near the Galactic Center and
the evaluated shadow size. To reduce tensions between estimates of the
black hole mass and the intrinsic size measurements, one can use the Reiss-
ner – Nordström metric with a significant charge which is comparable with
the critical one. We do not claim that the corresponding charge has an
electric origin because an interstellar environment is electrically neutral, so
the corresponding charge may be induced (like a tidal charge induced by
extra dimension) and has a non-electric origin. Charge estimates for the
Reissner – Nordström metric given from geodesic trajectories for orbital
motions are given in [46].

Recent estimates of the smallest structure in the M87 published in paper
[43] do not need an introduction of charge (tidal or normal) to fit obser-
vational data because sizes of the smallest spot near the black hole at the
object are consistent with the shadow size evaluated for the Schwarzschild
metric.
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