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Abstract

We give a brief review of the problem of quantum gravity. After the discussion
of the nonrenormalizability of general relativity, we briefly mention the main re-
search directions which aim to resolve this problem. Our attention then focuses
on the approach of Loop Quantum Gravity, specifically spinfoam models. These
models have some issues concerning the semiclassical limit and coupling of matter
fields. The recent developments in category theory provide us with the necessary
formalism to introduce a new action for general relativity and perform covariant
quantization so that the issues of spinfoam models are successfully resolved.

PACS number: 04.60.Pp

1. Introduction

It is well known that Einstein’s theory of General Relativity is not straight-
forward to quantize. This is easily seen from the fact that GR is not per-
turbatively renormalizable. Simply put, one can attempt to qunatize GR
as an ordinary spin-two field in flat Minkowski spacetime, in the following
way (for a nice review see [1]). Starting from the usual Einstein-Hilbert
action

SEH =

∫
d4x

√
−gR,

one rewrites the metric tensor gµν as the flat Minkowski metric ηµν and the
spin-two field hµν as

gµν = ηµν + hµν ,

and substitutes it into the action, rewriting it in terms of the new variable
hµν . Thereby one obtains

SEH =

∫
d4xhµν�hµν + (gauge fixing terms)+

+ (self-interaction terms).
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The D’Alambertian operator is defined in the usual way, in flat Minkowski
space, � ≡ ηµν∂µ∂ν . From here one can proceed to perform the stan-
dard field theory quantization in the naive way — first formulate the free
quantum field theory, and then introduce interactions perturbatively.

However, very soon one is bound to face the difficulty of nonrenormalizabil-
ity of this theory. The tree-level Feynman diagrams are finite, the one-loop
divergences can be removed by wavefunction renormalization, but at the
two-loop level a Lagrangian counterterm of the form

L2 =
const

ε2
Rαβ

µνR
µν

ρσR
ρσ

αβ (ε→ 0),

appears [2], which is nonzero on-shell. Here ε = 4−D is the cutoff param-
eter from dimensional regularization scheme. At higher loop levels similar
terms involving R4, R5, etc. terms are also expected to appear, rendering
the theory perturbatively nonrenormalizable. This means that in order to
remove all divergences one needs to introduce at least one additional cou-
pling constant for each loop level. The infinite number of these coupling
constants implies the loss of predictive power of the theory, since all ex-
periments doable in principle can only ever fix a finite number of coupling
constants.

This property of General Relativity has been known for quite some time,
and there are various research directions which attempt to address this
issue. They can be broadly separated into two classes, by the methodology.

The first class of approaches considers modifying or substituting GR by
another theory, which should preferably be renormalizable. Such attempts
have evolved into vast research directions such as supergravity, string field
theory, noncommutative geometry, and so on. The goal of each proposed
model is to have a renormalizable theory that looks like GR at least on
the length scales which can be tested experimentally, while at the same
time have only a finite number of coupling constants. These coupling con-
stants could then in principle be used to predict the values of the infinite
set of coupling constants appearing in the perturbative quantum gravity
approach.

The second class of approaches is based on the point of view that abandons
the renormalization paradigm, and essentially gives physical meaning to
the cutoff parameters of some particular regularization scheme. In other
words, the assumption is that at some scale (typically expected to be near
the Planck scale) expectation values of the physical observables will start to
depend explicitly on cutoff parameters. This dependence is assumed to be
measurable (in principle), rather than being removed by renormalization.
These attempts have also evolved into vast research directions such as loop
quantum gravity, causal dynamical triangulations, causal set theory, etc.
The goal of all proposed models is exactly the same as before — predict
some definite values for the infinite number of coupling constants present
in the perturbative quantum gravity.

All these research directions have had limited success, and in the absence of
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any experimental data relevant at the Planck scale, none of these directions
can be preferred over the others.

In what follows, we shall be mainly concerned with the approach of loop
quantum gravity (for a review see [3]), more specifically spin foam models,
and we shall propose one novel particular model that addresses some serious
issues present in all other spin foam models so far.

In section 2. we shall give a short overview of the status of LQG in general
and spin foam models in particular. We will argue that the main drawbacks
of all 4D spin foam models stem from the fact that tetrad fields are not basic
variables of the theory. Section 3. deals with the categorical generalization
of the Poincaré group, called the Poincaré 2-group. This will give us the
necessary mathematical tools to reformulate the GR action in a convenient
way which includes tetrad fields as basic variables. The analysis of this new
action is then given in section 4., with a sketch of a quantization procedure
giving rise to the so-called spincube model. Section 5. contains conclusions
and discussion of the results.

2. Loop Quantum Gravity and Spin Foam Models

A detailed review of the Loop Quantum Gravity approach can be found in
[3]. Here we just give some basic properties at an informal level.

The basic idea of LQG is to choose diffeomorphism-invariant quantities as
basic degrees of freedom for the gravitational field, and then perform a
canonical nonperturbative quantization of gravity in terms of these quan-
tities. The natural candidates for basic variables turned out to be Wilson
loops, and subsequently their generalizations called spin networks. This
choice of variables introduces a natural diffeomorphism-invariant cutoff at
the Planck length scale lP , thereby rendering the theory UV-finite. The
quantization is performed in the Schrödinger picture, and provides one
with a mathematically well-defined constructions of the kinematical Hilbert
space for the theory and some basic operators for geometric observables
such as lengths, areas and volumes of space. Evolution in time is embod-
ied in the Hamiltonian constraint, corresponding to the Wheeler-de Witt
equation in the LQG setting.

The main features of such canonical approach to quantization are as fol-
lows. The theory represents a nonperturbative quantization of GR, and
can in principle be applied to the study of physical systems where gravity
is the dominant factor at short distances — such systems include the black
hole and cosmological singularities. It gives one a mathematical handle on
a well-defined Hilbert space of states for the gravitational field, thereby
giving some insight into the quantum mechanical features of gravity. The
natural basis for the Hilbert space is the set of the spin network states, com-
binatorial graphs colored by the irreducible representations of the SU(2)
group, and corresponding intertwiners. Finally, the study of the geometric
observables — the length, area and volume operators — reveals that each
of them has a discrete spectrum, giving rise to the geometric interpretation
of the gravitational field wavefunctional, as well as the discrete character
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of space.

The theory also has some drawbacks. First, the Hamiltonian constraint is
not uniquely defined, due to the usual ordering problems present in quan-
tum mechanics. Second, even if one chooses some particular ordering, the
Hamiltonian constraint is extremely complicated and impossible to solve in
practice. This severely limits the possibility for any practical calculations
and the study of the dynamics of the theory. As the main obstacle, the
proof of the correct semiclassical limit of the theory is still missing, as well
as any attempt to predict the coupling constants from the perturbative
gravity approach.

A way to resolve these drawbacks has been found in the spin foam approach
[4]. The idea is to give up canonical quantization, but instead attempt a co-
variant, path-integral quantization of the theory. Building on the results of
the canonical approach, one wants to define the gravitational path-integral

Z =

∫
Dgµν exp (iSEH [gµν ])

in some way, in order to be able to calculate expectation values of observ-
ables, both in deep quantum regime and the semiclassical regime. This
approach tends to give one a good handle on the dynamics of the theory,
in addition to all features of the canonical approach.

The basic procedure of defining Z goes as follows. One starts from the
Plebanski action for General Relativity,

S =

∫
Bab ∧Rab + ϕabcdBab ∧Bcd.

The first part of this action represents the topological BF theory for the
SO(3, 1) group. The Rab is the curvature 2-form, a field strength “F” for
the SO(3, 1) connection 1-form ωab. The Bab is the Lagrange multiplier 2-
form. The second part of the action is the Plebanski constraint, featuring
Bab and the 0-form Lagrange multiplier ϕabcd. The purpose of the constraint
is to enforce the Bab to be a simple 2-form (i.e. an exterior product of two
1-forms). This constraint is therefore called “simplicity constraint”, and
it can be shown that the simplicity requirement of the Bab field is enough
to convert the topological BF theory into General Relativity. The fact
that Bab is simple gives rise to nontrivial degrees of freedom in the theory,
reducing the equation of motion for ωab from Riemann-flat to Ricci-flat.

The second step is the quantization of the topological BF theory. This can
be done in a rigorous way by employing the methods of topological quantum
field theory. One first discretizes spacetime into 4-simplices, motivated by
the structure of space in the canonical LQG, and rewrites the BF action
in the form ∫

Bab ∧Rab discr.−→
∑
△
B△R△,
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where the sum goes over all triangles in the triangulation. Then one defines
a topological invariant

Z ≡
∫

Dω
∫

DB exp
(
i
∑
△
B△R△

)
=

=
∑
Λ

∏
f

A2(Λf )
∏
v

A4(Λv).

Here Λ are the irreducible representations of SO(3, 1), labelling the faces
f , edges e and vertices v of the Poincaré dual lattice corresponding to the
triangulation. The colored 2-complex dual to the spacetime triangulation
is called a spin foam. The amplitudes A2(Λ) and A4(Λ) are determined
such that Z is in fact a topological invariant — the total expression must
not depend on the particular choice of the spacetime triangulation. In
that way one arrives at the TQFT corresponding to the BF theory for the
SO(3, 1) group, commonly called the Ooguri spin foam model. Of course,
the invariant Z may be (and actually is) badly divergent, but that is not
important at this stage, since we are only interested in the structure of the
path integral.

The last step in the quantization procedure is to enforce the simplicity con-
straint on the BF path integral at the quantum level. The exact technique
for this is quite involved [5, 6], but the bottomline is that one projects the
SO(3, 1) irreducible representations Λ to the SU(2) representations present
in the canonical LQG formalism, in order to obtain the same structure of
the Hilbert space on the spin foam boundary. The resulting theory is not
topologically invariant, but represents one possible rigorous definition for
the theory of quantum gravity. The most advanced spin foam model in this
respect is the EPRL/FK model, developed independently by two research
groups [5, 6].

The main feature of spin foam models is that they correct some drawbacks
of the canonical theory, primarily the dynamical sector is more under con-
trol. In addition, there remains a certain ambiguity in the choice of the
amplitudes A2 and A4. This can be conveniently utilized to redefine the
model such that it becomes IR-finite and to have a correct semiclassical
limit [7, 8]. One can also employ standard QFT methods to calculate the
effective action for the model in the semiclassical limit, which opens a pos-
sibility to explicitly determine the coupling constants from perturbative
quantum gravity.

Unfortunately, the spin foam models introduce their own set of problems.
Aside from the “unusual” properties like fuziness of geometry at the Planck
scale, all spin foam models suffer from two major handicaps. The first is re-
lated to the fact that, in addition to the good semiclassical limit, all models
have additional semiclassical limits, which do not give rise to the standard
GR, but to the so-called area-Regge geometry. Since these different classical
limits are not observed in experiments, one needs some additional mech-
anism to supress such solutions. However, so far no mechanism could be
constructed to deal with this problem.



366 Marko Vojinović

The second handicap is related to the inability of the spin foam models to
couple matter fields to gravity. Namely, the basic geometric variables which
are employed in description of spacetime geometry are areas and volumes of
space, but not lengths. This situation makes it extremely complicated (and
in the case of massive fermionic matter even impossible) to incorporate
matter fields into the spin foam model. Even if doable (see [9] for the
massless fermion coupling), the resulting theory would be too complicated
to be useful for any calculation.

As it turns out, both of these handicaps have a common origin — the edge
lengths in the triangulation are not well-defined at the quantum level. This
is itself a consequence of the choice of spin network states as basic degrees
of freedom in the canonical LQG — the choice which emphasizes the spin
connection ωab, while entirely ignoring the tetrad fields ea. At the level
of spin foam models, it is easy to see that the Plebanski constraint was
purposefully designed to require the simplicity of Bab, while avoiding to
explicitly state that (the dual of) Bab is the product of two tetrad 1-forms.
The reason for this is that the tetrad fields do not appear as variables in the
topological BF sector of the theory, which is being used for the definition
of the path integral.

In the remainder of this paper we will present a novel way to address this
main difficulty, and to introduce tetrad fields explicitly in the topological
sector of the theory. However, in order to do this, it is important to intro-
duce some mathematical concepts which provide the background formalism
for the new model.

3. Poincaré 2-group

We begin by giving a very brief review of the so-called categorification
ladder, an important and active research topic in category theory. We shall
not attempt at any rigor, leaving out most of the details, which can be
found for example in [10] and references therein.

In the branch of mathematics called category theory, one defines a structure
called a category as a set of objects and a set of morphisms between those
objects, satisfying some basic axioms. Such a structure is fairly general and
does not have many interesting properties itself. However, this generality
allows one to use it for all sorts of purposes. For example, one can define
the usual structure of a group as a category which has only one object,
while all morphisms (mapping the object onto itself) are invertible. The
composition rules for the morphisms can be chosen to be the group mul-
tiplication, thereby providing an isomorphism between a given group and
the corresponding category with one element.

The first step in the categorification ladder is to introduce the concept of
a 2-category. A 2-category consists of a set of objects, a set of morphisms
and a set of 2-morphisms, maps between morphisms. Intuitively, if a cat-
egory can be represented by a linear graph of dots (objects) and arrows
connecting them (morphisms), a 2-category can be represented by a planar
graph, consisting of dots (objects), arrows connecting them (morphisms)
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and “surface arrows” mapping one arrow into another (see [10] for details
and pictures). The main point is that the dimensionality of the graph has
been raised by one. The categorification ladder can continue by introducing
a 3-category (or in general an n-category) by a similar process, leading to
3-dimensional (in general n-dimensional) graphs.

In analogy with a group, one can then define a 2-group, as a 2-category
which has only one element, while all morphisms and 2-morphisms are in-
vertible. A 2-group is a categorical generalization of a group, and is not
a group itself. One can prove that any 2-group is equivalent to a crossed
module, a structure that has been studied independently by mathematicians
before the idea of the categorification ladder has even been introduced. A
crossed module is a quadruple (G,H, ∂, ◃). This is a pair of groups G and
H, such that ∂ : H → G is a homomorphism and ◃ : G × H → H is an
action of G on H such that certain axioms are satisfied, which turn out to
be directly related to the structure of a 2-category, see [10]. The elements
of G represent the 1-morphisms, while the elements of the semidirect prod-
uct GnH represent the 2-morphisms. The canonical example of a 2-group
relevant for physics is the Poincaré 2-group, where G = SO(3, 1), H = R4,
∂ is a trivial homomorphism and ◃ is the usual action of the Lorentz trans-
formations on the R4 space. The Lorentz group is the group of morphisms,
while the usual Poincaré group is the group of 2-morphisms.

The main feature of the whole 2-group formalism is that one can generalize
the concept of a holonomy along a line to its two-dimensional analog — a
surface holonomy. The initial interest in this came from string theory. A
point-particle travels along a world line in spacetime, and one is naturally
led to the concept of a parallel transport along a given line. String theory
promotes the point particle into a one-dimensional object — a string —
which then travels along a world surface in spacetime. Thus one would
like to have a concept of a parallel transport along a given surface. One of
the main aims of the 2-category and 2-group formalism is to introduce and
formalize this concept.

Given the strong categorical relationship between groups and 2-groups,
one can construct a gauge theory on a 4-manifold M based on a crossed
module (G,H, ∂, ◃) of Lie groups by using 1-forms A, which take values
in the Lie algebra g of G, and 2-forms β, which take values in the Lie
algebra h of H [11, 12]. The forms A and β transform under the usual
gauge transformations g : M → G as

A→ g−1Ag + g−1dg , β → g−1 ◃ β ,

while the gauge transformations generated by H are given by

A→ A + ∂η , β → β + dη +A ∧◃ η + η ∧ η ,

where η is a one-form taking values in h, see [12]. When the group H is
Abelian, which happens in the Poincaré 2-group case, then the η ∧ η term
vanishes, and one obtains the gauge transformations given in [11].
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The pair (A, β) represents a 2-connection on a 2-fiber bundle associated to
the 2-Lie group (G,H) and the manifold M. The corresponding curvature
forms are given by

F = dA+A ∧A− ∂β , G = dβ +A ∧◃ β ,

and they transform as

F → g−1Fg , G → g−1 ◃ G ,

under the usual gauge transformations, while

F → F , G → G + F ∧◃ η ,

under the H-gauge transformations.

One can introduce a natural topological gauge theory determined by the
vanishing of the 2-curvature

F = 0 , G = 0 .

These equations can be obtained from the action

S =

∫
⟨B ∧ F⟩g + ⟨C ∧ G⟩h ,

where B is a Lagrange multiplier 2-form taking values in g, C is a Lagrange
multiplier 1-form taking values in h, ⟨ , ⟩g is a G-invariant nondegenerate
bilinear form in g and ⟨ , ⟩h is a G-invariant nondegenerate bilinear form
in h. This action is called BFCG action, in analogy with the BF theory
action. The gauge transformations of the Lagrange multiplier fields are
given by

B → g−1Bg , C 7→ g−1 ◃ C ,

for the usual gauge transformations, while

B → B − [C, η] , C 7→ C ,

for the H-gauge transformations.

Let us now examine the case of the Poincaré 2-group. In this case A =
ωabJab, β = βaPa, where a, b ∈ {0, 1, 2, 3}, Jab are the generators of the
Lorentz group while Pa are the generators of the translation group R4.
Consequently

F = (dωab + ωa
c ∧ ωcb)Jab = RabJab,

G =
(
dβa + ωa

b ∧ βb
)
Pa = (∇βa)Pa.

The G-gauge transformations are the local Lorentz rotations

ω → g−1ωg + g−1dg , β → g−1 ◃ β ,
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while the H-gauge transformations are the local translations

δεω
ab = 0 , δεβ

a = dεa + ωa
b ∧ εb ,

where η = εaPa.

The BFCG action then becomes

S =

∫
M

(
Bab ∧Rab + Ca ∧∇βa

)
,

where
δεB = 0 , δεC = 0 .

At this point a very important observation is in order. The transformation
properties of the 1-form Ca are the same as the transformation properties
of the tetrad 1-form ea under the local Lorentz and the diffeomorphism
transformations. In addition, the equation of motion for Ca is ∇Ca = 0,
just like the no-torsion equation for the tetrad, ∇ea = 0. Based on this, we
identify the Lagrange multiplier Ca with the tetrad field ea, and write the
action in the form

S =

∫
M

(
Bab ∧Rab + ea ∧∇βa

)
.

In this way one can construct a categorical generalization of the topological
BF action. The new action is again topological, but more rich in struc-
ture, since the tetrad fields are explicitly present. In addition, the 2-group
formalism provides a framework to construct a topological quantum field
theory from this action, in analogy with the BF case. This provides us
with the necessary tools to construct a categorical generalization of a spin
foam model, based on the BFCG action instead of the BF action. The
explicit presence of the tetrads should help us resolve the two handicaps of
spin foam models discussed in section 2..

4. The Spincube Model

The first step in the construction of the new model is to write the action
for General Relativity, starting from the BFCG action. In order to do this,
all we need is the simplicity constraint,

Bab = εabcd e
c ∧ ed ,

which can now be added into the action as it stands, as opposed to the
BF case where the Plebanski constraint had to be introduced due to the
absence of the tetrads ea in the BF action. Therefore, one can write the
constrained BFCG action in the form

S =

∫
M

[
Bab ∧Rab + ea ∧∇βa − ϕab ∧

(
Bab − εabcdec ∧ ed

) ]
, (1)
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where ϕab is an additional Lagrange multiplier 2-form field, introduced in
order to enforce the simplicity constraint.

The equations of motion are obtained by varying S with respect to B, e,
ω, β and ϕ, respectively, to give:

Rab − ϕab = 0 , ∇βa + 2εabcdϕ
bc ∧ ed = 0 , ∇Bab − e[a ∧ βb] = 0 ,

∇ea = 0 , Bab − εabcde
c ∧ ed = 0 .

With the usual assumption that the tetrad fields are nondegenerate, these
equations can be reworked into an equivalent form:

ϕab = Rab, Bab = εabcde
c ∧ ed, βa = 0,

∇ea = 0 , εabcdR
bc ∧ ed = 0 .

The first three equations determine βa and the multipliers Bab and ϕab in
terms of ea and ωab. The fourth equation is the no-torsion equation, which
determines the connection ωab to be the Levi-Civita connection (a function
of the tetrads ea). The last equation is nothing but the Einstein field
equation for the only remaining field ea. Thus we see that the action (1) is
classically equivalent to General Relativity. More precisely, it is equivalent
to the Einstein-Cartan theory,

SEC =

∫
M
εabcde

a ∧ eb ∧Rcd ,

since the torsion is equal to zero as an equation of motion rather than by
definition.

Given the new action for General Relativity, we can proceed with the co-
variant quantization in analogy with the spin foam models. The action has
the topological term and the constraint term, so as a first step we con-
struct a topological quantum field theory by defining the path integral for
the BFCG part of the action. In the second step, we enforce the con-
straint term by requiring a suitable restriction in the path integral of the
topological theory.

One begins by triangulating spacetime into 4-simplices, and rewriting the
topological part of the action in the form∑

△
B△R△ +

∑
l

el(∇β)l,

where the first sum goes over all triangles and the second goes over all
edges in the triangulation of the spacetime manifold. Then one constructs
a topologically invariant path integral in the form (see [13] for the details
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of the construction)

Z ≡
∫

Dω
∫

DB
∫

De
∫

Dβ exp
(
i
∑
△
B△R△ + i

∑
l

el(∇β)l
)
=

=
∑
Λ

∏
p

A1(Λp)
∏
f

A2(Λf )
∏
v

A4(Λv).

(2)
The labels Λ = (Lp,mf ), where Lp ∈ R+

0 and mf ∈ Z, are now irreducible
representations of the Poincaré 2-group, and in addition to vertices v and
faces f of the Poincaré dual lattice, we also take the product over all the
polyhedra p, since they are dual to the edges of the triangulation and
naturally appear in the construction due to the presence of the e ∧ ∇β
term in the BFCG action. The amplitudes A1(Λ), A2(Λ) and A4(Λ) are
chosen so that Z does not change under the action of the Pachner moves,
which guarantees its independence of the triangulation. The polyhedra are
colored with Lp, which have the interpretation as lengths of triangulation
edges, while faces are colored with mf , which have the interpretation as
areas of the triangles in the triangulation. In the topological theory, edge
lengths and triangle areas are independent of each other.

Note that the path integral is not defined over a colored 2-complex (the
spinfoam), but rather over a colored 3-complex (called spincube).

Finally, we can impose the simplicity constraint, in order to turn the topo-
logical path integral into a realistic model for quantum gravity. Based on
the geometric interpretation of the variables, the constraint actually says
that a very natural requirement should be enforced — the triangle areas
must be compatible with the corresponding edge lengths. This can be for-
malized in the requirement

|mf |l2P = Af (L), ∀f

where Af (L) is the Heron formula for the triangle area in terms of its edges.
The Planck length appears naturally in order to balance the dimensions of
the two sides of the equation. As a last step, one redefines the amplitudes
A1, A2 and A4 in order to render the theory IR-finite, as well as to enforce
the correct semiclassical limit, in a way similar to the spinfoam models.

Note that imposing this constraint leaves only edge lengths as indepen-
dent variables in the theory, so that the “area-Regge” problem present in
spinfoam models is resolved automatically. In addition, the edge length
variables allow for a completely straightforward coupling of matter fields
to the spincube model. Namely, at the level of the classical theory, one can
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introduce fermions via the action

S =

∫ [
Bab ∧Rab + ea ∧∇βa − ϕab ∧

(
Bab − εabcdec ∧ ed

) ]
+

+ iκ1

∫
εabcd e

a ∧ eb ∧ ec ∧ ψ̄
[
γd

↔
d + {ω, γd}+ im

2
ed
]
ψ+

+ iκ2

∫
εabcde

a ∧ eb ∧ βc ψ̄γ5γdψ ,
(3)

where ω = ωab[γ
a, γb]/8, κ1 = 8πl2P /3 and κ2 = −2πl2P . The first term is

the constrained BFCG action, while the second and third terms introduce
fermion coupling which results in the same equations of motion as in the
ordinary Einstein-Cartan theory with fermions.

The quantization procedure of the action (3) is essentially the same as the
one without fermions. The only difference is in the fact that the vertex
amplitude A4 will change to reflect the presence of the fermionic matter,
as

A4 → A4 exp
[
iS

(ferm)
R (L,ψ)

]
,

where S
(ferm)
R is the Regge discretized action of a fermion field ψ coupled

to gravity. The expressions which appear in S
(ferm)
R can be easily obtained,

in contrast to the EPRL/FK model case, where the expression for the 4-
simplex volume is impossible to define uniquely in terms of the spin foam
variables [9].

Similarly to (3), one can also couple other matter fields to (1) in a com-
pletely straightforward way, including gauge and scalar fields, the cosmo-
logical constant, the Holst term, and so on.

5. Conclusions

The proposed 2-group reformulation of GR can be used to obtain a cate-
gorical ladder generalization of Loop Quantum Gravity. The advantage of
this generalization is that the edge lengths of a triangulation become the
basic dynamical variables. This will facilitate the construction of the path
integral such that the classical limit of the corresponding quantum theory
is GR and the coupling of matter will be much easier to accomplish.

The categorical nature of the theory implies that the edge labels of a space-
time triangulation should be the 2-group irreducible representations on a
2-Hilbert space. Note that this is not unique, since one can also use the
category of chain complexes of vector spaces in order to define the represen-
tations, see [12, 14]. The structure of the chain-complex representations is
different from the 2-Hilbert space representations, which means that chain-
complex representation theory defines an alternative quantization of GR.
Hence it would be interesting to develop the chain-complex representation
theory of the Poincaré 2-group.



Spincube model of quantum gravity 373

The physical significance of 2-Hilbert space representations could be better
understood by performing a canonical quantization of the action (1).

As far as the construction of 4-manifold invariants based on the BFCG
state sum is concerned, one would have to regularize the topological state
sum/integral based on the amplitude (2) such that the triangulation inde-
pendence is preserved. One way to do it is to try to implement a gauge-
fixing procedure, see [15]. Another way is to find a quantum group reg-
ularization, since there are strong indications that categorified quantum
groups and their representations will be important for the construction of
4-manifold invariants [16]. Hence one can try to find a crossed module of
Hopf algebras which is a deformation of the Poincaré 2-group, and then try
to find an appropriate 2-category of representations which will give a finite
topological state sum.
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