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Abstract

Green’s ansatz is a well known method for construction of ”unique vacuum” rep-
resentations of parabose (parafermi) algebra. Exploiting a Clifford algebra variant
of the Green’s ansatz we construct unitary representations with vacuum state car-
rying arbitrary SU(n) representation (n being the number of parabose operator
pairs).

1. Introduction

Parabose algebra was introduced by H.S. Green [1] long ago, as a gen-
eralization of the common bose algebra relations. Following the Green’s
definition, parabose algebra is algebra of n pairs of mutually hermitian

conjugate operators aα, a
†
α, satisfying trilinear relations:

[{aα, a†β}, aγ ] = −2δβγaα, (1)

[{aα, aβ}, aγ ] = 0, (2)

together with relations (additional four) that follow from these by hermitian
conjugation and by use of Jacobi identities.1

In the same paper [1], Green offered a solution for the above relations, in
the terms of sum of operators satisfying ”mixed” commutation and anti-
commutation relations:

aα =
∑p

a=1 a
a
α, (3)

where aaα and aa†α anticommute for different values of Green’s indices a and
b:

a ̸= b ⇒ {aa†α , ab†α } = {aaα, abα} = {aaα, ab†α } = 0 (4)

∗ Work supported by MPNTR, Project OI-171031.
† e-mail address: isalom@ipb.ac.rs
1We note that, in a Hilbert space equipped with positive definite metrics (with respect

to which one defines the adjoint a†
α), all algebra relations actually follow from the single

relation (1).
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and behave as usual bose creation and annihilation operators otherwise:

a = b ⇒ [aaα, a
b†
β ] = δβα, [a

a
α, a

b
β] = 0. (5)

This construction is nowadays known as the ”Green’s ansatz” while the
integer p is called the ”order of parastatistics”. Obviously, the case p = 1
corresponds to usual bose algebra.

Parabose algebra was originally introduced as an alternative, i.e. general-
ized method for field quantization, that would correspond to hypothetical
particles obeying neither the usual Fermi nor the Bose statistics, but a
generalization called parastatistics. In [3] Greenberg and Messiah have
concluded that, in this particular context of parastatistics, Green’s ansatz
suffices for construction of all relevant unitary representations. However,
his considerations included two elements special to the parastatistics con-
text: 1) assumption of infinite many degrees of freedom n (i.e. infinite num-
ber parabose pairs) that effectively precluded solutions with non-integer p
values, and 2) assumption that only ”unique vacuum” Fock space represen-
tations are of physical interest.

On the other hand, parabose algebra has importance as an algebraic struc-
ture in its own right, irrespectively of the parastatistical context. Math-
ematically, it was realised by Ganchev and Palev [2] that this algebra is
equivalent to the orthosymplectic osp(1|2n) superalgebra.2 In the light
of this connection, parabose algebra, or, in other words, osp(1|2n) super-
algebra, has its importance in many physical areas/models. Of particu-
lar interest are the models where parabose algebra (osp(1|2n) superalge-
bra) represents the space-time supersymmetry algebra (eg. [4, 5]). In this
context number of parabose pairs n depends on the dimensionality of the
space-time and ranges usually from n = 4 (in the four dimensional case)
to n = 32 or n = 64 (string theory). The assumptions taken by Greenberg
and Messiah in [3] here have no longer physical sense: 1) due to finite n,
the order of parastatistics p can also take noninteger values from a cer-
tain continuum range (p0,∞), where p0 is related to the, so called, first
reduction point (Verma module terminology) [6], and 2) Fock vacuum has
no more interpretation of ”no particle state” but merely represents lowest
conformal energy state and thus representations other than ”unique vac-
uum” ones must also be considered. Being not applicable to both of these
classes of representations, the basic form of the Green’s ansatz construc-
tion is therefore no longer sufficient. Of the two, the latter shortcoming is
far more serious. Namely, in the context of space-time symmetry, unitary
irreducible representations (UIR’s) of parabose algebra should be directly
related to particle content of the model. Whereas it could be argued that
non integer values of order of parastatistics p could be nonphysical, it is
not so for the ”unique vacuum” representations. On the contrary, in these

2This is exactly so if the parabose algebra is defined solely by structural relations,
without any mention of Hermitian conjugation. However, if the algebra is introduced as
in [1], then, strictly speaking, it is one concrete realization of the osp(1|2n) superalgebra
that has only positive energy unitary representations.
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representations lowest weight state (i.e. Fock vacuum state) carries nontriv-
ial representation of SU(n) compact subgroup of osp(1|2n) and thus they
carry additional quantum numbers – the fact that makes corresponding
particles physically highly interesting and important.

2. Unitary representations

In this section we recapitulate [7] classification of unitary irreducible rep-
resentations of parabose algebra, as defined by (1,2) (results correspond to
classification of positive energy UIR’s of osp(1|2n)). The results were ob-
tained by computer analysis of the lowest weight Verma module structure
for cases n ≤ 4, followed by a straightforward conjecture for the classifica-
tion for case of arbitrary n.

First we will fix the notation and definitions, which basically follow that of
[6].

We consider lowest weight Verma modules V Λ ∼= U(G+) ⊗ |v0⟩. Here,
G+ denotes subalgebra of positive roots in standard algebra decomposition
GC = G+ ⊕ H ⊕ G− (G denotes superalgebra osp(1|2n) and GC its com-
plexification; H is Cartan subalgebra) and |v0⟩ is a lowest weight vector of
weight Λ:

X ∈ G− ⇒ X|v0⟩ = 0, H ∈ H ⇒ H|v0⟩ = Λ(H)|v0⟩. (6)

Roots, expressed using elementary functionals, are:

∆ = {±δα, 1 ≤ α ≤ n;±δα ± δβ, 1 ≤ α < β ≤ n;

±2δα, 1 ≤ α ≤ n} (7)

(the two signs in ±δα±δβ not being correlated) and the corresponding root
vectors we will denote as (in the same order):

G+ ⊕ G− = {a†±α, 1 ≤ α ≤ n; a†±α,±β, 1 ≤ α < β ≤ n;

a†±α,±α, 1 ≤ α ≤ n}. (8)

Here we introduced a compact notation for superalgebra elements, that
emphasises the parabose connection:

a†−α ≡ aα, a†α,β ≡ {a†α, a
†
β}. (9)

Simple root vectors are:

{a†−2,1, a
†
−3,2, . . . , a

†
−n,n−1, a

†
n}. (10)

We will label representations by the signature

χ = {s1, s2, . . . , sn−1, d}, (11)
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that is connected to the lowest weight Λ in the following way:

(Λ, δα) = d+
1

2
(a1 + a2 + · · ·+ aα−1 − aα − · · · − an−1). (12)

Notice that parameters s1, s2, . . . , sn−1 define behaviour of the lowest weight

state |v0⟩ under action of the SU(n) subgroup generated by elements {aα, a†β}.
The case s1 = s2 = · · · = sn−1 = 0 corresponds to the ”unique vacuum”
representations.

We introduce a (Shapovalov) norm on the Verma module via natural in-

volutive antiautomorphism: ω : ω(aα) = a†α (compatible with the assumed
Hilbert space metric). Right away we note that simple unitarity consider-

ations – calculating norms of vectors a†−(α+1),α|v0⟩ and a†1|v0⟩ – result in

constraints: sα ≥ 0, d ≥ (s1+s2+· · ·+sn−1)/2. Parameters s1, s2, . . . , sn−1
must be integers, labelling an SU(n) Young tableau with s1+s2+· · ·+sn−1
boxes in the first row, s1 + s2 + · · · + sn−2 boxes in the second and so on,
ending with s1 boxes in the row n− 1.

For certain values of Λ, submodules appear in the structure of the Verma
module V Λ and the module becomes reducible. Basic case is when this
happens due to existence of a singular vector |vs⟩ ∈ V Λ:

X|vs⟩ = 0, ∀X ∈ G−. (13)

This singular vector, in turn, generates a submodule V Λ′ ∼= U(G+)|vs⟩
within V Λ.

To ensure irreducibility, all submodules corresponding to singular vectors
must be factored out. However, after factoring out these submodules, new
singular vectors may appear in the remaining space – called subsingular
vectors. Namely, if the union of all submodules of singular vectors is de-
noted by ĨΛ then a vector |vss⟩ ∈ V Λ is called a subsingular vector [9] if

|vss⟩ /∈ ĨΛ and:

X|vss⟩ ∈ ĨΛ, ∀X ∈ G−. (14)

Just as singular vectors, subsingular vectors also generate submodules that
have to be factored out when looking for irreducible representations.

In the particular case of osp(1|2n) there are always, irrespectively of d value,
singular vectors of the form:

|vαs ⟩ ≡ (a†−(α+1),α)
sα+1|v0⟩, α = 1, 2, . . . n− 1, (15)

(when considering cases of unitary and therefore finite dimensional SU(n)
representations µ, related to integer values of sα). Of special interest thus
are additional d-dependant singular vectors.

Our analysis of the Verma module structure heavily relied on the computer
analysis and was carried out in the following general manner (that we just
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briefly describe). First, Kac determinant of a sufficiently high level was
considered as a function of parameter d (for each given class of SU(4)
representation µ). In this way it was possible to locate the highest value
of d for which the determinant vanishes and the Verma module becomes
reducible. The singular or subsingular vector responsible for the singularity
of the Kac matrix was then calculated, effectively by solving an (optimized)
system of linear equations. Next we would find the norm of this vector and
look for possible additional discrete reduction points at (lower) values of
d for which the norm also vanishes. If new reduction points with new
(sub)singular vectors were found it was also necessary to check that, upon
removal of the corresponding submodules, no vectors with zero or negative
norm remained. For this, it was enough to check that previously found
(sub)singular vectors (i.e. those occurring for higher d values) belonged to
the factored-out submodules. Optimized Wolfram Mathematica code was
written to perform all these calculations. The analysis was carried out for
n ≤ 4 cases and the results turned out to be readily generalizable to the
case arbitrary n. Classification of parabose UIR’s is given in the following
list, where the allowed values of the parameter d are given for different
possible cases of parameters s1, s2, . . . , sn−1 values:

• s1 = s2 = · · · = sn−1 = 0, i.e. ”unique vacuum” UIR’s:

d > (n− 1)/2;

d = (n− 1)/2, |v(1,1,1,...,1,1,1,1)ss ⟩;
d = (n− 2)/2, |v(0,1,1,...,1,1,1,1)ss ⟩;

. . .

d = 2/2, |v(0,0,0,...,0,1,1,1)ss ⟩;
d = 1/2, |v(0,0,0,...,0,0,1,1)s ⟩;
d = 0/2, |v(0,0,0,...,0,0,0,1)s ⟩;

(16)

• s1 = s2 = · · · = sn−2 = 0, sn−1 > 0, i.e. single row tableaux UIR’s:

d > sn−1/2 + (n− 1 + 1)/2;

d = sn−1/2 + (n− 1)/2, |v(1,1,1,...,1,1,0)ss ⟩;
d = sn−1/2 + (n− 1− 1)/2, |v(0,1,1,...,1,1,0)ss ⟩;

. . .

d = sn−1/2 + 4/2, |v(0,0,...,1,1,1,0)ss ⟩;
d = sn−1/2 + 3/2, |v(0,0,...,0,1,1,0)s ⟩;
d = sn−1/2 + 2/2, |v(0,0,...,0,0,1,0)s ⟩;

(17)

• . . .

• s1 = 0, s2 > 0, i.e. (n− 2) rows tableaux UIR’s:

d > (s2 + · · ·+ sn−1)/2 + n− 3/2;

d = (s2 + · · ·+ sn−1)/2 + n− 3/2, |v(1,1,0,...,0,0,0)s ⟩;
d = (s2 + · · ·+ sn−1)/2 + n− 4/2, |v(0,1,0,...,0,0,0)s ⟩;

(18)
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• s1 > 0, i.e. (n− 1) rows tableaux UIR’s:

d > (s1 + · · ·+ sn−1)/2 + n− 1;

d = (s1 + · · ·+ sn−1)/2 + n− 1, |v(1,0,0,...,0,0,0)s ⟩. (19)

For each allowed value of d, existence of a corresponding singular or subsin-
gular vector is indicated, using the following notation: ss in the lower index
stands for ”subsingular” whereas s means ”singular” vector; in the upper
index we give ”relative weight” of the vector – if the (sub)singular vector
generates Verma submodule of weight Λ′ the the relative weight is Λ′ − Λ.
For UIR’s from continuous d range, no (sub)singular vectors appear.

3. Construction of parabose UIR’s

In this section we will use a Clifford algebra variant of Green’s ansatz,
first proposed by Greenberg and Macrae [8], to explicitly construct the
listed parabose UIR’s. Note, that, whereas Greenberg and Messieah have
discussed use of Green’s ansatz only for construction of ”unique vacuum”
UIR’s [3], we will demonstrate that Green’s ansatz suffices for construction
of all discrete UIR’s.

The method cannot be applied to UIR’s from the continuous spectre, i.e.
those UIR’s that occur for non (half)integer values of parameter d. How-
ever, from the physical viewpoint, representations from the discrete spectre
(d taking discrete (half)integer values less or equal to the first reduction
point) are of greater significance since only in these cases singular or sub-
singular vectors appear. It is well known that these vectors turn into im-
portant equations of motion (e.g. see [9]). In the particular case of the
parabose generalization of supersymmetry, these vectors, for example, turn
into Klein-Gordon, Dirac and Maxwell equations [5].

In the same paper where he first introduced parabose (and parafermi) alge-
bra [1], H.S.Green has also offered a way to construct some of the unitary
representations using what is nowadays known as the Green’s ansatz (3).
Greenberg and Macrea in [8] introduced a ”gauge-invariant” variant of the
Green’s ansatz, representing the annihilation parabose operators as the fol-
lowing sum:

aα =
∑p

a=1 a
a
α ea. (20)

In this expression integer p is the order of the parastatistics, ea are elements
of a real Clifford algebra3:

{ea, eb} = 2δab (21)

and operators aaα together with adjoint aa†α satisfy ordinary bosonic algebra
relations. There are total of n ·p mutually commuting pairs of annihilation-

creation operators (aaα, a
a†
α ):

[aaα, a
b†
β ] = δβαδ

ab; [aaα, a
b
β] = 0, (22)

3Greenberg has also considered using complex Clifford algebra instead of real one, but
that case requires altering of parabose algebra relations.
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where a, b = 1, 2, . . . p and α, β = 1, 2, . . . n.

The overall Green’s ansatz representation space of order p can be seen
as tensor product of p multiples of Hilbert spaces Ha of ordinary linear
harmonic oscillator in n-dimensions multiplied by the representation space
of matrix representation of the Clifford algebra:

H = H1 ⊗H2 ⊗ · · · ⊗ Hp ⊗ C2[p/2] . (23)

A single factor Hilbert space Ha is the space of unitary representation of

n dimensional bose algebra of operators (aaα, a
a†
α ), α = 1, 2, . . . n: Ha

∼=
U(aa†α )|0⟩a, where |0⟩a is the usual Fock vacuum of factor space Ha.

It is clear that no negative or zero norm states appear in this space. There-
fore, if we can find, in this framework, a lowest weight vector |v0⟩ of a proper
weight (corresponding to UIR’s classified in the previous section) then the
vectors of the form P(X)|v0⟩,P(X) ∈ U(G+) will span that representation
space.

The unique vacuum representations of order p are constructed upon lowest

weight vector |v{0,...,0,d}0 ⟩ of the form:

|0p, w0⟩ ≡ |0⟩1 ⊗ |0⟩2 ⊗ · · · ⊗ |0⟩p ⊗ w0, (24)

where w0 is an arbitrary (column) vector from C2[p/2] of unit norm (scalar

product in C2[p/2] is defined in usual way). All representations with (half)
integer d from the class (17) of the UIR’s classification can be constructed
in this manner. The order of parastatistics has, for this class, the following
connection with the UIR signature: p = 2d.

However, construction of the ”unique vacuum”, i.e. s1 = s2 = · · · = sn−1 =
0 representations within Green’s ansatz was known already to Green and
Greenberg [1, 3]. The nontrivial part is construction of other representa-
tions, in which the lowest weight state carries nontrivial representation of
the SU(n) subgroup. A key step toward this end is a specific ”pairing” of
factor spaces. We define operators:

A
(k)†
α± ≡ 1√

2
(a2k−1†

α ± ie(k)a
2k†
α ), (25)

where e(k) ≡ −ie2k−1e2k are mutually commuting ([e(k), e(l)] = 0) and
hermitian, and, by a convention, Green’s index put in brackets enumerates
”pairs” of factors spaces.

We note the following important relations satisfied by the operators (25):

[A
(k)
α±, A

(l)†
β± ] = δklδαβ , [A

(k)
α±, A

(l)†
β∓ ] = 0, (26)

where A
(k)
α± = (A

(k)†
α± )† = 1√

2
(a2k−1

α ∓ ie(k)a
2k
α ). In other words, operators

(A
(k)†
α+ , A

(k)
α+) and (A

(k)†
α− , A

(k)
α−) are two independent sets of bose creation-

annihilation operators.
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Expressed using these operators, the parabose operator aα has the following
form:

aα =

[p/2]∑
k=1

√
2e2k−1A

(k)
α− + ϵ epa

p
α, (27)

where ϵ ≡ (p mod 2). This form directly follows from the definitions (20,

25) and relation e2k−1A
(k)
α±e2k−1 = A

(k)
α∓. The last term is simply a remain-

der left after the pairing, that exists when p is odd.

From (27) it immediately follows that parabose operators aα will annihilate

any state built by acting of A
(l)†
β+ operators upon the Fock vacuum of order

p:

aαP(A
(k)†
β+ )|0p, w0⟩ = 0, (28)

with P(A
(k)†
β+ ) denoting arbitrary polynomial of the operators (25).

On the other hand, such states transform nontrivially under action of SU(n)
subgroup, which is readily seen from:

{a†α, aβ} = pδαβ + 2

[p/2]∑
k=1

(A
(k)†
α+ A

(k)
β+ +A

(k)†
α− A

(k)
β−) + ϵ 2ap†α apβ. (29)

It is this combination of properties that allows us to easily construct lowest
weight states of non-unique vacuum representations by using operators (25).

The discrete UIR’s that correspond to single row Young tableaux (17) are
constructed upon the lowest weight state of the form (up to normalization):

|v{0,...,0,sn−1,d}
0 ⟩ ∼ (A

(1)†
n+ )sn−1 |0p, w0⟩, (30)

where p = 2d− sn−1. Note that such UIR’s are obtainable for p ≥ 2.

Those discrete UIR’s corresponding to double rows Young tableaux are

constructed by using antisymmetrized products of two A
(k)†
α+ operators:

|v{0,...,0,sn−2,sn−1,d}
0 ⟩ ∼ (A

(1)†
n+ A

(2)†
n−1+ −A

(1)†
n−1+A

(2)†
n+ )sn−2(A

(1)†
n+ )sn−1 |0p, w0⟩,

(31)
where p = 2d− sn−2 − sn−1. Such UIR’s are obtainable for p ≥ 4, that is,
at least two pairs of factor spaces are needed.

Construction of UIR’s that correspond to Young tableaux with more rows
follows the same obvious pattern.

By inspecting the classification of parabose UIR’s (16-19) it is evident that
all representations for which 2d ∈ N can be constructed in this manner,
in particular all representations corresponding to appearance of additional
(sub)singular vectors.
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4. On a symmetry of the ansatz

We note that this Clifford variant of the Green’s ansatz possesses an in-
trinsic SO(p) symmetry generated by the following hermitian operators:

Gab ≡
n∑

α=1

i(aa†α abα − ab†α aaα) +
i

4
[ea, eb], (32)

where ea = ea. Note that two terms in (32) resemble orbital and spin parts
of rotation generators and that all vectors from the space (23) of Green’s
ansatz belong to spinorial representations of this symmetry group. These
generators commute with entire parabose algebra:

[Gab, aα] = 0, (33)

and this fact can help to solve problem of the reducibility of the Green’s
ansatz space (23) for a given p. Namely, due to this commutativity, all
states from (23) are, apart from osp(1|2n) quantum numbers, also labelled
by quantum numbers of some (spinorial) UIR of SO(p). Besides, behaviour
of the vectors from (23) under action of SO(p) group (32) is determined
solely by transformation properties of the corresponding lowest weight vec-
tor |v0⟩. This is easily seen as all vectors belonging to a parabose UIR
determined by the lowest weight vector |v0⟩ can be written as

P(X)|v0⟩,P(X) ∈ U(G+), (34)

while
GabP(X)|v0⟩ = P(X)Gab|v0⟩. (35)

With a suitable choice of positive root system of the so(p) algebra, it can
be shown that osp(1|2n) lowest weight vectors of the form (30-31) are, at
the same time, the highest (lowest) weight vectors of certain SO(p) UIR’s.
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