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Abstract

We give explicit formulas for star products in CPN and CHN in all order of a
noncommutative parameter. We use a quantization method to perform a defor-
mation quantization of Kähler manifolds, which is introduced by Karabegov. We
also investigate the Fock representations of the noncommutative CPN and CHN .

1. Introduction

Noncommutative spaces appear in various physical theories (For review, see
e.g. [1, 2]). For example, let us consider a charged particle in an x−y plane
in a strong magnetic field perpendicular to the plane. The Lagrangian of
the particle is dominated by an interaction term, Bz(ẋ(t)y(t) − ẏ(t)x(t)),
and then the coordinates become noncommutative, [x(t), y(t)] ∼ i~/Bz,
after the canonical quantization. In string theories, a similar phenomenon
occurs in low energy effective theories on D-branes in a constant back-
ground NS-NS B field. In this case, effective theories on D-branes become
nonabelian gauge theories on noncommutative D-branes with a noncom-
mutative parameter characterized by a value of B.

An important example of noncommutative spaces which are frequently used
in investigations of field theories is the noncommutative Rd. A product
between fields on the noncommutative Rd is given by the Moyal product,

(f ∗ g)(x) = e
i
2
θij∂x

i ∂
y
j f(x)g(y)

∣∣∣
y=x

,

where θij is a constant noncommutative parameter, θij = −θji. In particu-
lar, the coordinates satisfy the following commutation relations under the
Moyal product,

[xi, xj ]∗ = xi ∗ xj − xj ∗ xi = iθij .
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These are the same forms as the commutation relations which appear in a
system of a charged particle in a strong magnetic field mentioned above.

Matrix models give other important examples of noncommutative spaces
and field theories on them. In matrix models, all of degrees of freedom
are described by finite size matrices. Let us consider the fuzzy S2. The
coordinates on the fuzzy S2, X̂i (i = 1, 2, 3), are described by using the
(n+ 1)-dimensional representation of su(2) algebra (n ∈ N),

[X̂i, X̂j ] = iϵijkX̂k.

Fields on the fuzzy S2 are given by matrices which are functions of X̂i, and
thus the product between fields are noncommutative obviously.

Through vigorous investigations of field theories on noncommutative spaces,
it is clarified that those theories have some characteristic properties. One of
the properties is nonlocality. A typical example is known as UV/IR mixing,
which is the fact that low energy scales appear in high energy phenomena
(e.g. UV divergences). Moreover, in cases of gauge theories, open Wilson
lines become gauge invariant observables and their lengths are proportional
to their momenta. Another property is the existence of noncommutative
solitons and instantons. In most cases, these properties are studied in field
theories on a limited class of noncommutative spaces, e.g. the noncommu-
tative Rd, the fuzzy tori, the fuzzy spheres, and so on. To investigate these
properties further, one need to construct a wide class of noncommutative
spaces in which physical quantities can be calculated explicitly.

In this article, we give explicit formulas of a deformation quantization with
separation of variables for CPN and CHN . Star products are obtained as
power series of the noncommutative parameter in all order. We also give
the Fock representations of the noncommutative CPN and CHN [3].

2. Review of the deformation quantization with separation
of variables

In this section, we review the deformation quantization with separation of
variables to construct noncommutative Kähler manifolds.

An N -dimensional complex Kähler manifolds is defined by using a Kähler
potential. Let Φ be a Kähler potential and ω be a Kähler 2-form:

ω := igkl̄dz
k ∧ dz̄l,

gkl̄ :=
∂2Φ

∂zk∂z̄l
. (1)

The gk̄l is the inverse of the metric gkl̄ :

gk̄lglm̄ = δk̄m̄. (2)
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In the following, we denote

∂k =
∂

∂zk
, ∂k̄ =

∂

∂z̄k
. (3)

Firstly, we give the definition of deformation quantization as follows. F is
defined as a set of formal power series:

F :=

{
f
∣∣∣ f =

∑
k

fk~k, fk ∈ C∞

}
. (4)

A star product is defined as

f ∗ g =
∑
k

Ck(f, g)~k (5)

such that the product satisfies the following conditions.

1. ∗ is associative product.

2. Ck is a bidifferential operator.

3. C0 and C1 are defined as

C0(f, g) = fg, (6)

C1(f, g)− C1(g, f) = i{f, g}, (7)

where {f, g} is the Poisson bracket.

4. f ∗ 1 = 1 ∗ f = f .

Note that this definition of the deformation quantization is weaker than
the usual definition of deformation quantization. The difference between
them is in (7). In the strong sense of deformation quantization the con-
dition C1(f, g) = i

2{f, g} is required. Deformation quantization with the
separation of variables does not satisfy this condition. In this article, “de-
formation quantization” is used in this weak sense.

Next, a star product with separation of variables is defined as follows. ∗ is
called a star product with separation of variables when

a ∗ f = af (8)

for a holomorphic function a and

f ∗ b = fb (9)

for an anti-holomorphic function b.

Karabegov proposed a method to construct a star product with separation
of variables on Kähler manifolds[4, 5, 6]. In his method, a star product by
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f ∈ F is given as a differential operator Lf such that f ∗ g = Lfg. Lf is
expanded as a power series of ~,

Lf =

∞∑
n=0

~nAn, (10)

where An is a differential operator whose coefficients depend on f i.e.

An = an,α(f)D
α, Dα =

n∏
i=1

(Dī)αi , (Dī) = gīl∂l. (11)

Here α is a multi-index α = (α1, · · · , αn). Lf is uniquely determined by
the following conditions,

[Lf , ∂l̄Φ+ ~∂l̄] = 0, (12)

Lf1 = f ∗ 1 = f. (13)

Then, it can be shown that this ∗-product satisfies the associativity,
Lh(Lgf) = h ∗ (g ∗ f) = (h ∗ g) ∗ f = LLhgf.

When the operator Lz̄i corresponding to the left-multiplication by z̄i is
constructed, a left operation Lf for a generic function f is given by the
following formula,

Lf =
∑
α

1

α!

(
∂

∂z̄

)α

f (Lz̄ − z̄)α. (14)

3. Star product with separation of variables on CPN

In this section, we give explicit expressions for a star product on CPN by
solving the condition (12).

In the inhomogeneous coordinates zi (i = 1, 2, · · · , N), the Kähler potential
of CPN is given by

Φ = ln
(
1 + |z|2

)
, (15)

where |z|2 =
∑N

k=1 z
kz̄k. The metric (gij̄) is

ds2 = 2gij̄dz
idz̄j , (16)

gij̄ = ∂i∂j̄Φ =
(1 + |z|2)δij − zj z̄i

(1 + |z|2)2
, (17)

and the inverse of the metric (gīj) is

gīj = (1 + |z|2)
(
δij + zj z̄i

)
. (18)
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In the case of CPN , the following relations simplify our calculations for Lf ,

∂ī1∂ī2 · · · ∂īnΦ = (−1)n−1(n− 1)! ∂ī1Φ∂ī2Φ · · · ∂īnΦ, (19)

Rij̄kl̄ =− gij̄gkl̄ − gil̄gkj̄ , (20)

where Rij̄kl̄ is the Riemann tensor.

We construct the operator Lz̄l , which is corresponding to the left star prod-
uct by z̄l. Lz̄l is defined as a power series of ~,

Lz̄l = z̄l + ~Dl̄ +
∞∑
n=2

~nAn, (21)

where An (n ≥ 2) is a formal series of the differential operators Dk̄. We
assume that An has the following form,

An =

n∑
m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄, (22)

where the coefficients a
(n)
m do not depend on the coordinates..

From the requirement of [Lz̄l , ∂īΦ+ ~∂ī] = 0, the operators An are recur-
sively determined by the equations

[An, ∂īΦ] = [∂ī, An−1] , (n ≥ 2) (23)

where A1 = Dl̄. A2 = ∂j̄ΦD
j̄Dl̄ is easily obtained from the above equation.

Substituting the assumption (22) into the recursion relations, we find

a
(n)
2 = a

(n−1)
2 = · · · = a

(2)
2 = 1, (24)

and

a(n)m = a
(n−1)
m−1 + (m− 1)a(n−1)

m . (25)

To solve this equation, we introduce a generating function

αm(t) ≡
∞∑

n=m

tna(n)m , (26)

for m ≥ 2. Then the relation (25) is written as

αm(t) = t [αm−1(t) + (m− 1)αm(t)] , (27)
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and can be solved as

αm(t) =
t

1− (m− 1)t
αm−1(t)

= tm−2
m−1∏
n=2

1

1− nt
× α2(t). (28)

From (24), α2(t) becomes

α2(t) =

∞∑
n=2

tna
(n)
2 =

∞∑
n=2

tn =
t2

1− t
, (29)

and thus αm(t) is determined as

αm(t) = tm
m−1∏
n=1

1

1− nt
=

Γ(1−m+ 1
t )

Γ(1 + 1
t )

, (m ≥ 2). (30)

Actually, a
(n)
m is related to the Stirling numbers of the second kind S(n, k)

as

a(n)m = S(n− 1,m− 1). (31)

Summarizing the above calculations, Lz̄l becomes

Lz̄l = z̄l + ~Dl̄ +

∞∑
n=2

~n
n∑

m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄

= z̄l + ~Dl̄ +

∞∑
m=2

( ∞∑
n=m

~na(n)m

)
∂j̄1Φ · · · ∂j̄m−1

ΦDj̄1 · · ·Dj̄m−1Dl̄

= z̄l +

∞∑
m=1

αm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄. (32)

Here we defined α1(t) = t. Similarly, it can be shown that the right star
product by zl, Rzlf = f ∗ zl is expressed as

Rzl = zl + ~Dl +

∞∑
n=2

~n
n∑

m=2

a(n)m ∂j1Φ · · · ∂jm−1ΦD
j1 · · ·Djm−1Dl

= zl +

∞∑
m=1

αm(~)∂j1Φ · · · ∂jm−1ΦD
j1 · · ·Djm−1Dl, (33)

where Di = gij̄∂j̄ .
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From above formulas, we can now calculate the star products among zi and
z̄i, explicitly,

zi ∗ zj = zizj , (34)

zi ∗ z̄j = ziz̄j , (35)

z̄i ∗ z̄j = z̄iz̄j , (36)

z̄i ∗ zj = z̄izj + ~δij(1 + |z|2)2F1

(
1, 1; 1− 1/~;−|z|2

)
+

~
1− ~

z̄izj(1 + |z|2)2F1

(
1, 2; 2− 1/~;−|z|2

)
, (37)

where 2F1 is the Gauss hypergeometric function.

Though the differential operator Lf corresponding to the left multiplication
by a generic function f can be derived from the formula (14), we find that
it can be also written as the following form,

Lf =
∞∑
n=0

cn(~)gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄n . (38)

The coefficient cn(~) is determined by the condition [Lf , ~∂ī + ∂īΦ] = 0.
This condition leads to the recurrence relation, n(1 − ~(n − 1))cn(~) −
~cn−1(~) = 0. This equation is easily solved and cn(~) is obtained as

cn(~) =
Γ(1− n+ 1/~)
n!Γ(1 + 1/~)

=
αn(~)
n!

, (39)

under the initial condition c0 = 1. Furthermore, we can show that the
expression of Lf (38) is rewritten by the use of the covariant derivatives on
the manifolds, as follows,

Lfg = f ∗ g =
∞∑
n=0

cn(~)gj̄1k1 · · · gj̄nkn
(
∇j̄1 · · · ∇j̄nf

)
(∇k1 · · · ∇kng) . (40)

Here we used the fact that non-vanishing components of the Christoffel
symbols on a Kähler manifolds are only Γi

jk and Γī
j̄k̄
.

In this article, we treat ~ as a formal parameter. Here we consider the
specific case of ~ = 1/L (L ∈ N) and the star product in a function space
ML spanned by

zi1 · · · zim z̄j1 · · · z̄jn
(1 + |z|2)L

, (m,n ≤ L).

In this case, the series in (38) terminates at n = L, because

Dj1 · · ·DjL+1f = 0, Dk̄1 · · ·Dk̄L+1g = 0,
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where f, g ∈ ML. Then, the expression of the star product coincides with
the one in [7].

Several ways of making deformation quantization by a reduction from
higher dimensional manifolds are known. In [8], a star product on CPN

was constructed by performing the phase space reduction from CN+1\{0}.
The expression of their star product, denoted here as ∗B, for functions f
and g on CPN is written as

f ∗B g

= fg +

∞∑
m=1

~m
m∑
s=1

s∑
k=1

km−1(−1)m−k

s!(s− k)!(k − 1)!

(
|ζ|2
)s ∂sf

∂ζ̄A1 · · · ζ̄As

∂sg

∂ζA1 · · · ζAs
,

(41)

where ζAi , ζ̄Aj are the homogeneous coordinates. This satisfies the condi-
tions for a star product with separation of variables, and thus the equations
(34)-(36) hold trivially under ∗B product. A nontrivial one is z̄i ∗B zj , and
it is calculated as

z̄i ∗B zj =z̄izj + ~δij(1 + |z|2)F̃1(−|z|2) + ~z̄izj(1 + |z|2)F̃2(−|z|2), (42)

where zi = ζi/ζ0, z̄i = ζ̄i/ζ̄0, and

F̃1(−|z|2) ≡
∞∑

m=0

m∑
s=0

s+1∑
k=1

~ms!km(−1)m+1−k

(s+ 1− k)!(k − 1)!
(1 + |z|2)s, (43)

F̃2(−|z|2) ≡
∞∑

m=0

m∑
s=0

s+1∑
k=1

~m(s+ 1)!km(−1)m+1−k

(s+ 1− k)!(k − 1)!
(1 + |z|2)s. (44)

We can show that F̃1(−|z|2) satisfies the hypergeometric equation and the

boundary conditions for 2F1(1, 1; 1 − 1/~;−|z|2), and thus F̃1(−|z|2) =

2F1(1, 1; 1−1/~;−|z|2). Similarly, F̃2(−|z|2) = 2F1(1, 2; 2−1/~;−|z|2)/(1−
~) can be also shown. Therefore it turns out z̄i ∗ zj = z̄i ∗B zj . These facts
lead to f ∗ g = f ∗B g, since star products between generic functions are
calculated by using these relations. Namely, the star product constructed
by Karabegov’s method coincides with the star product ∗B in [8]. As far
as we know, the origin of this coincidence of the star products obtained by
these different methods is not apparent at this time.

Before closing this section, we mention the Leibniz rule for differentials
under the star product obtained here. Since the expression of the star
product we obtained depends on the metric of CPN , the partial differentials
does not satisfy the Leibniz rule, ∂(f ∗ g) ̸= (∂f) ∗ g + f ∗ (∂g). However
we can show that the Leibniz rule holds with respect to the Killing vector
fields corresponding to the SU(N + 1) isometry of CPN ,

La(f ∗ g) = (Laf) ∗ g + f ∗ (Lag). (45)
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Here La is the Killing vector fields,

[La,Lb] = ifabcLc, (46)

where fabc is the structure constant of su(N+1). This property is important
to construct actions of field theories on the noncommutative CPN which is
invariant under the isometry.

4. Fock representation

The left star product by ∂iΦ and the right star product by ∂īΦ are respec-
tively written as

L∂iΦ = ~∂i + ∂iΦ = ~e−Φ/~∂ie
Φ/~, (47)

R∂īΦ = ~∂ī + ∂īΦ = ~e−Φ/~∂īe
Φ/~. (48)

From the definition of the star product given in the previous section, we
easily find

∂iΦ ∗ zj − zj ∗ ∂iΦ = ~δij , zi ∗ zj − zj ∗ zi = ∂iΦ ∗ ∂jΦ− ∂jΦ ∗ ∂iΦ = 0,
(49)

z̄i ∗ ∂j̄Φ− ∂j̄Φ ∗ z̄i = ~δij , z̄i ∗ z̄j − z̄j ∗ z̄i = ∂īΦ ∗ ∂j̄Φ− ∂j̄Φ ∗ ∂īΦ = 0.
(50)

Hence, {zi, ∂jΦ | i, j = 1, 2, · · · , N} and {z̄i, ∂j̄Φ | i, j = 1, 2, · · · , N} consti-
tute 2N sets of the creation-annihilation operators under the star product.
However, it is noted that operators in {zi, ∂jΦ} does not commute with
ones in {z̄i, ∂j̄Φ}, e.g., zi ∗ z̄j − z̄j ∗ zi ̸= 0.

Here, we would like to construct the Fock representation of the star prod-
uct. First we show that e−Φ/~ = (1 + |z|2)−1/~ corresponds to the vacuum

projection under the star product. e−Φ/~ is annihilated by the left star
product of ∂iΦ and z̄i,

∂iΦ ∗ e−Φ/~ = L∂iΦe
−Φ/~ = ~e−Φ/~∂ie

Φ/~e−Φ/~ = 0, (51)

z̄i ∗ e−Φ/~ = Lz̄ie
−Φ/~

=

(
z̄i +

∞∑
m=1

αm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1

)
e−Φ/~

= 0. (52)

Similarly, it is shown that e−Φ/~ is annihilated by the right star product of
the ∂īΦ and zi,

e−Φ/~ ∗ ∂īΦ = e−Φ/~ ∗ zi = 0. (53)
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Next, we show that e−Φ/~ satisfies the relation

e−Φ/~ ∗ f(z, z̄) = e−Φ/~f(0, z̄) (54)

for a function f(z, z̄) such that f(z, w̄) can be expanded as Taylor series
with respect to zi and w̄j , respectively. To show the relation, we note
that the differential operator Rzi corresponding to the right product of
zi contains only partial derivatives by z̄j , and thus commutes with zk.
Moreover, Rzi annihilates e−Φ/~, Rzie

−Φ/~ = e−Φ/~ ∗ zi = 0 as mentioned
above. From these, the relation (54) is shown as

e−Φ/~ ∗ f(z, z̄) = Rfe
−Φ/~

=
∞∑

k1,...,kN=0

1

k1! · · · kN !
∂k1
1 · · · ∂kN

N f(z, z̄)
N∏

m=1

(Rzm − zm)km e−Φ/~

=

∞∑
k1,...,kN=0

1

k1! · · · kN !
∂k1
1 · · · ∂kN

N f(z, z̄)

N∏
m=1

(−zm)km e−Φ/~

= e−Φ/~f(0, z̄). (55)

Similarly, the following equation holds

f(z, z̄) ∗ e−Φ/~ = f(z, 0)e−Φ/~. (56)

As a specific case of the equation (54), it is seen that e−Φ/~ is an idempotent
operator under the star product,

e−Φ(z,z̄)/~ ∗ e−Φ(z,z̄)/~ = e−Φ(z,z̄)/~e−Φ(0,z̄)/~ = e−Φ(z,z̄)/~, (57)

where Φ(0, z̄) = 0 is used.

By using the relations (54) and (56), it is possible to calculate explicitly

star products containing e−Φ/~ as follows,

e−Φ/~ ∗ (∂i1Φ(z, z̄) · · · ∂inΦ(z, z̄)) = e−Φ/~ (∂i1Φ(0, z̄) · · · ∂inΦ(0, z̄))
= z̄i1 · · · z̄ine−Φ/~

= e−Φ/~ ∗ z̄i1 ∗ · · · ∗ z̄in , (58)(
∂ī1Φ(z, z̄) · · · ∂īnΦ(z, z̄)

)
∗ e−Φ/~ = zi1 · · · zine−Φ/~

= zi1 ∗ · · · ∗ zin ∗ e−Φ/~. (59)

We then consider a class of functions

Mi1···im;j1···jn =
zi1 · · · zim z̄j1 · · · z̄jn√

m!n!αm(~)αn(~)
e−Φ/~, (60)
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where αn(~) is defined in (30). Mi1···im;j1···jn is totally symmetric under
permutations of i’s and j’s, respectively. By using the commutation rela-
tions (49) and the fact that e−Φ/~ is the vacuum projection, it can be shown
that these functions form a closed algebra:

Mi1···im;j1···jn ∗Mk1···kr;l1···ls = δnrδ
k1···kn
j1···jn Mi1···im;l1···ls , (61)

where δk1···knj1···jn is defined as

δk1···knj1···jn =
1

n!

[
δk1j1 · · · δknjn + permutations of (j1, · · · , jn)

]
. (62)

Therefore a set of linear combinations of Mi1···im;j1···jn forms a closed alge-
bra. In particular, the operators Pi1···in = Mi1···in;i1···in constitute a set of
orthogonal projection operators,

Pi1···im ∗ Pj1···jn = δmnδ
i1···in
j1···jnPi1···in . (63)

These operators would be useful for construction of solitons in field theories
on the noncommutative CPN .

The star products between Mi1···im;j1···jn and one of zk, ∂kΦ, z̄
k and ∂k̄Φ are

explicitly calculated as follows,

zk ∗Mi1···im;j1···jn =

√
m+ 1

−m+ 1/~
Mki1···im;j1···jn , (64)

∂kΦ ∗Mi1···im;j1···jn = ~
√

−m+ 1 + 1/~
m

m∑
l=1

δkilMi1···îl···im;j1···jn , (65)

z̄k ∗Mi1···im;j1···jn =
1√

m(−m+ 1 + 1/~)

m∑
l=1

δkilMi1···îl···im;j1···jn , (66)

∂k̄Φ ∗Mi1···im;j1···jn = ~
√

(m+ 1)(−m+ 1/~)Mki1···im;j1···jn , (67)

Mi1···im;j1···jn ∗ zk =
1√

n(−n+ 1 + 1/~)

n∑
l=1

δkjlMi1···im;j1···ĵl···jn , (68)

Mi1···im;j1···jn ∗ ∂kΦ = ~
√

(n+ 1)(−n+ 1/~)Mi1···im;j1···jnk, (69)

Mi1···im;j1···jn ∗ z̄k =

√
n+ 1

−n+ 1/~
Mi1···im;j1···jnk, (70)

Mi1···im;j1···jn ∗ ∂k̄Φ = ~
√

−n+ 1 + 1/~
n

n∑
l=1

δkjlMi1···im;j1···ĵl···jn . (71)
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5. Star product on CHN

In this section, we give explicit expressions for a star product on CHN ,
which is a noncompact Kähler manifold. As far as we know, star products in
quantum deformation of CHN (n ≥ 2) has not been explicitly constructed
so far.

The Kähler potential of CHN is given by

Φ = − ln
(
1− |z|2

)
. (72)

The metric gij̄ and the inverse metric gīj are defined by

gij̄ = ∂i∂j̄Φ =
(1− |z|2)δij + z̄izj

(1− |z|2)2
, (73)

gīj = (1− |z|2)
(
δij − z̄izj

)
. (74)

The operator Lz̄l is expanded as a power series of the noncommutative
parameter ~,

Lz̄l = z̄l + ~Dl̄ +

∞∑
n=2

~nBn. (75)

We assume that Bn has the following form,

Bn =

n∑
m=2

(−1)n−1b(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄. (76)

The factor (−1)n−1 in the front of the coefficient b
(n)
m is introduced for

convenience.

Requiring [Lz̄l , ∂īΦ+ ~∂ī] = 0, the following recursion relations which b
(n)
m

should satisfy are found

b
(n)
2 = b

(n−1)
2 = · · · = b

(2)
2 = 1,

b(n)m = b
(n−1)
m−1 + (m− 1)b(n−1)

m . (77)

Hence b
(n)
m coincides with a

(n)
m , and we obtain the explicit representation of
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the star product with separation of variables on CHN ,

Lz̄l = z̄l + ~Dl̄ +

∞∑
n=2

~n
n∑

m=2

(−1)n−1b(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄

= z̄l +

∞∑
m=1

(−1)m−1βm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄, (78)

Rzl = zl + ~Dl +

∞∑
n=2

~n
n∑

m=2

(−1)n−1b(n)m ∂j1Φ · · · ∂jm−1ΦD
j1 · · ·Djm−1Dl

= zl +

∞∑
m=1

(−1)m−1βm(~)∂j1Φ · · · ∂jm−1ΦD
j1 · · ·Djm−1Dl, (79)

with

βn(t) = (−1)nαn(−t) =
Γ(1/t)

Γ(n+ 1/t)
. (80)

The differential operator corresponding to the left multiplication by a generic
function f can be written in the forms of (38) and (40) with cn(~) =
βn(~)/n!. And it can be shown that the Leibniz rule holds for the Killing
vector fields corresponding to the SU(N, 1) isometry of CHN .

Using the representations of the star product, we can calculate the star
products among zi and z̄i,

zi ∗ zj =zizj , (81)

zi ∗ z̄j =ziz̄j , (82)

z̄i ∗ z̄j =z̄iz̄j , (83)

z̄i ∗ zj =z̄izj + ~δij(1− |z|2)2F1

(
1, 1; 1 + 1/~; |z|2

)
− ~

1 + ~
z̄izj(1− |z|2)2F1

(
1, 2; 2 + 1/~; |z|2

)
. (84)

As in the case of CPN , {zi, ∂jΦ} and {z̄i, ∂j̄Φ} satisfy the commutation

relations for the creation-annihilation operators. Also e−Φ/~ is the vacuum
projection operator,

∂iΦ ∗ e−Φ/~ = 0, z̄i ∗ e−Φ/~ = 0, (85)

e−Φ/~ ∗ ∂īΦ = 0, e−Φ/~ ∗ zi = 0, (86)

and

e−Φ/~ ∗ e−Φ/~ = e−Φ/~. (87)
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As in the case of CPN , we consider a class of functions

Ni1···im;j1···jn =
zi1 · · · zim z̄j1 · · · z̄jn√

m!n!βm(~)βn(~)
e−Φ/~ (88)

Ni1···im;j1···jn is totally symmetric under permutations of i’s and j’s, respec-
tively. Then we can show that these functions form a closed algebra

Ni1···im;j1···jn ∗Nk1···kr;l1···ls = δnrδ
k1···kn
j1···jn Ni1···im;l1···ls . (89)

It is also shown easily that the operators Ni1···in;i1···in are orthogonal pro-
jection operators.

Moreover, the star products between Ni1···im;j1···jn and one of zk, ∂kΦ, z̄
k

and ∂k̄Φ are calculated as follows,

zk ∗Ni1···im;j1···jn =

√
m+ 1

m+ 1/~
Nki1···im;j1···jn , (90)

∂kΦ ∗Ni1···im;j1···jn = ~
√

m− 1 + 1/~
m

m∑
l=1

δkilNi1···îl···im;j1···jn , (91)

z̄k ∗Ni1···im;j1···jn =
1√

m(m− 1 + 1/~)

m∑
l=1

δkilNi1···îl···im;j1···jn , (92)

∂k̄Φ ∗Ni1···im;j1···jn = ~
√

(m+ 1)(m+ 1/~)Nki1···im;j1···jn , (93)

Ni1···im;j1···jn ∗ zk =
1√

n(n− 1 + 1/~)

n∑
l=1

δkjlNi1···im;j1···ĵl···jn , (94)

Ni1···im;j1···jn ∗ ∂kΦ = ~
√

(n+ 1)(n+ 1/~)Ni1···im;j1···jnk, (95)

Ni1···im;j1···jn ∗ z̄k =

√
n+ 1

n+ 1/~
Ni1···im;j1···jnk, (96)

Ni1···im;j1···jn ∗ ∂k̄Φ = ~
√

n− 1 + 1/~
n

n∑
l=1

δkjlNi1···im;j1···ĵl···jn . (97)

6. Summary and discussion

In this article, we provided explicit expressions of star products in CPN and
CHN by using the method for making the deformation quantization with
separation of variables which is proposed by Karabegov. In this method, a
star product by functions is described by a formal series of differential op-
erators, which is determined as solutions of an infinite system of differential
equations. We constructed the explicit forms of solutions of the equations
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in the case of CPN and CHN . Operators corresponding to the left (right)
star multiplications of functions are obtained as power series of a noncom-
mutative parameter ~ in which each term contains the Stirling numbers
of the second kind, the Kähler potentials of the manifolds, and differential
operators. The expressions of the star products obtained here depend on
the metric of the manifolds, and it is seen that the Leibniz rule holds for
the Killing vector fields corresponding to isometries of these manifolds.

We also constructed the Fock representations of the star products by using
the fact that {zi, ∂jΦ} and {z ī, ∂j̄Φ} constitute 2N sets of the creation-

annihilation operators under the star product. We found the function e−Φ/~

corresponding to the vacuum projection operator. Then we considered
functions which are derived by multiplying polynomials of zi and z ī on
e−Φ/~, and showed that these functions satisfy the closed algebra under the
star product. In particular, we obtained the functions which constitute a
set of orthogonal projection operators.

Can we apply our analysis performed here to other Kähler manifolds? For
example, let us try to extend the covariant expression of Lf (40) to locally

symmetric Kähler manifolds, ∇µRνρσ
λ = 0. We assume the following form

of Lf ,

Lfg =

∞∑
n=0

T j̄1···j̄n,k1···kn
n

(
∇j̄1 · · · ∇j̄nf

)
(∇k1 · · ·∇kng) , (98)

where g is a scalar function. We assume that T j̄1···j̄n,k1···kn
n is a covariantly

constant tensor, ∇Tn = 0, and completely symmetric under permutations
of j̄’s and k’s, respectively. From the condition [Lf , ∂īΦ + ~∂ī] = 0, the

following recursion relations for T j̄1···j̄n,k1···kn
n are found,[

nT j̄1···j̄n,k1···kn
n gkn ī − ~T j̄1···j̄n−1,k1···kn−1

n−1 δj̄n
ī

− ~
n(n− 1)

2
T j̄1···j̄n,k1···kn−2pq
n Rīpq

kn−1

] (
∇j̄1 · · · ∇j̄nf

) (
∇k1 · · · ∇kn−1g

)
= 0.

(99)

Since the recursion relations include only the metric and the Riemann ten-

sor, T j̄1···j̄n,k1···kn
n is determined as a function of these quantities and the

assumption ∇Tn = 0 is satisfied. Though it is difficult to derive solutions
of the recursion relations in closed form expressions, solutions can be de-
termined order by order. In the case of CPN , the recursion relations are
simplified. Because Rij̄kl̄ = −gij̄gkl̄ − gil̄gkj̄ on CPN with the metric (17),

it can be shown that Lf has the covariant form (40).

It is interesting to study field theories on the noncommutative CPN and
CHN constructed in this article. For example, we can define a scalar field
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on CPN as
ϕ =

∑
ϕi1···im;j1···jnMi1···im;j1···jn ,

where Mi1···im;j1···jn is defined in (60). Since the algebra which M ’s satisfy
is known, we can calculate quantities constructed by ϕ. As an action, we
can choose, e.g. ∫

dµ

(
1

2
LaϕLaϕ+ V (ϕ)

)
where La is the Killing vector field (46) and dµ is the usual integration
measure with respect to the Fubini-Study metric on CPN . It is important
to construct noncommutative solitons as classical solutions and to analyse
quantum properties of these theories.

Acknowledgement
H. U. would like to thank Prof. Branko Dragovich and the organizers of the
7th Mathematical Physical Meeting (Belgrade, September 2012) for their
hospitality.

References

[1] M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Mod.
Phys. 73, 977 (2001) [hep-th/0106048].

[2] R. J. Szabo, “Quantum field theory on noncommutative spaces,” Phys. Rept.
378, 207 (2003) [hep-th/0109162].

[3] A. Sako, T. Suzuki and H. Umetsu, “Explicit Formulae for Noncommuta-
tive Deformations of CPN and CHN ,” J. Math. Phys. 53, 073502 (2012)
[arXiv:1204.4030 [math-ph]].

[4] A. V. Karabegov, “On deformation quantization, on a Kahler manifold, associ-
ated to Berezin’s quantization,” Funct. Anal. Appl. 30, 142 (1996).

[5] A. V. Karabegov, “Deformation quantizations with separation of variables
on a Kahler manifold,” Commun. Math. Phys. 180, 745 (1996) [arXiv:hep-
th/9508013].

[6] A. V. Karabegov, “An explicit formula for a star product with separation of
variables,” [arXiv:1106.4112 [math.QA]].

[7] A. P. Balachandran, B. P. Dolan, J. -H. Lee, X. Martin and D. O’Connor, “Fuzzy
complex projective spaces and their star products,” J. Geom. Phys. 43, 184 (2002)
[hep-th/0107099].

[8] M. Bordemann, M. Brischle, C. Emmrich, S. Waldmann, “Phase Space Reduction
for Star-Products: An Explicit Construction for CPn,” Lett. Math. Phys. 36
(1996), 357.


