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Abstract

General aspects of the quantum modes functions of the scalar fields on de Sitter
spacetime are reviewed. Spherical eigenfunctions of a Hamiltonian operator, found
using a special technique that involves time evolution pictures are discussed on
the spatially flat FLRW chart. A concise background on de Sitter spacetime is
provided, together with an argument on what coordinate charts are the most
suitable for the endeavor of determining the quantum modes, as a first step in
constructing a quantum field theory on this curved background.

PACS: 04.62.+v

1. Introduction

The de Sitter spacetime is a positively curved maximal symmetric manifold.
It has the same high symmetry as Minkowski spacetime, and it describes an
expanding spacetime, empty of matter or radiation, but having a positive
cosmological constant. For these features, it is promising as a classical
background on which to formulate a quantum field theory, provided certain
difficulties are overcome. Alternatively, it is used in cosmology to model
the expansion of the inflationary phase of the Universe.
Thanks to its high symmetry, the de Sitter manifold can be covered with
a multitude of coordinate charts. [1, 2, 3, 4, 5]. On some charts, the field
equations have separating variables, and consequently mode functions can
be expressed. Scalar waves have been discussed on de Sitter in various
coordinates, as early as 1938 by Schrödinger [6, 7] as classical waves, and
then quantum waves throughout the years [8, 9, 10, 11, 12].
Since the de Sitter spacetime is as symmetrical as Minkowski spacetime, it
has also been interpreted as an extension of special relativity to a spacetime
empty of matter, but having a positive cosmological constant. [13, 14, 15]
Therefore, the study of the various solutions of the field equations is impor-
tant, since it is the first step needed in order to extend the Minkowskian
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quantum field theory to a curved spacetime like de Sitter. However, the
opinions on how to proceed in building an interacting quantum field theory
are diverse, and sometimes conflicting. [16, 17, 18, 19]
In this paper, we first introduce de Sitter spacetime as a manifold, covered
with certain coordinate charts, arguing for the advantages of the most pop-
ular ones. Then, general considerations on the determination of the scalar
quantum modes are discussed. In the end, some quantum modes that are
eigenfunctions of a Hamiltonian-like operator are presented, showing that
more than one set of mode can be introduced in a chart. The procedure by
which these result can be obtained is also discussed.

2. The de Sitter manifold

The de Sitter manifold is a Lorentzian manifold, taken here to be of dimen-
sion 3 + 1. It is usually defined as being embedded in a 4 + 1 dimensional
flat spacetime (termed ”global embedding Minkowski spacetime”- GEMS,
or simply ”embedding space”), satisfying a constraint of the type

ηABZ
AZB = − 1

ω2
, (1)

where ZA with A = 1..5 are the coordinates in the embedding space, and
ηAB = diag(1,−1,−1,−1,−1) the flat Lorentzian metric.
We assume that the de Sitter manifold is covered with a local chart {xµ},
µ = 1..4, such that

ZA = ZA(x
µ), (2)

are called the embedding functions, and contain all the information about
the embedding.
Then, the metric tensor on dS is inherited through the embedding ZA(xµ)
and reads

gµν = ηAB
∂ZA

∂xµ
∂ZB

∂xν
. (3)

The de Sitter manifold, just as the Minkowski manifold is maximally sym-
metric (it has the maximum amount of Killing vectors- 10 for the total 4
dimensions). The Killing vectors components on de Sitter can be expressed
in terms of the embedding, being inherited also from the embedding space:

kµAB = gµνηACηBD

(
ZC ∂ZD

∂xν
− ZD ∂ZC

∂xν

)
. (4)

Now, we can turn to the different coordinates used to cover this manifold.
One of the most used charts in this respect are the Friedmann-Lemaitre-
Robertson-Walker charts. De Sitter is the only manifold that admits coordi-
natizations of all the three FLRW types. These are important in cosmology,
because they exhibit isotropy and homogeneity.
Of these three, the spatially flat (Euclidean) chart {t, x, y, z} presents the
most interest because of observations that indicate that even though there
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is spacetime curvature, the spatial part is flat- it’s time slices are Euclidean
3-spaces. Moreover, it exhibits manifest translation symmetry:

ds2 = dt2 − e−2ωt(dx2 + dy2 + dz2). (5)

Another important chart is the de Sitter static chart {ts, rs, θ, ϕ}which has
the ∂t is a Killing vector, since none of the components of its metric tensor
are time-dependent. It would be useful if a chart can be found that has
the best of both worlds: ∂t as a Killing vector and it’s time slices being
Euclidean spaces. This can be thought as a hybrid between the spatially flat
FLRW and the static chart. It is sometimes termed ”de Sitter-Painlevé”
chart, for its analogy with the Painlevé chart on the Schwarzschild manifold.
[20] Its line element is

ds2 = (1− ω2r2s)dt
2 + 2ωrsdrsdt− dr2s − r2sdΩ

2
2. (6)

All the above charts have a useful property: they can separate the Klein-
Gordon equation. There are of course many more charts that don’t have
the property, but nevertheless receive attention. A worthy mention would
be a class of charts that admit parameterizations of the form

Zµ(xµ) =
xµ

f(xνxν)
, (7)

because they put time and space on an equal footing as coordinates. These
have been vehiculated as good candidates in the formulation of an ex-
tension of special relativity from Minkowski spacetime to de Sitter space-
time. For instance, the Beltrami chart [21], where f(x) =

√
1− ω2(t2 − x⃗2)

gives rise to a coordinate chart that are interpreted as the ”inertial coor-
dinates” of de Sitter spacetime. Also, the stereographic chart [14] with
f(x) = 1 − ω2(t2 − x⃗2)/4, a chart in which the metric tensor is conformal
to that of Minkowski spacetime, and used as the basis for ”de Sitter spe-
cial relativity”, an extension for non-vanishing cosmological constant to the
traditional special relativity. [15]
However, one serious drawback is that no symmetries are manifest, and
consequently the field equations do not separate in either of these charts,
though the Laplace equation for the spatial coordinates does. [22] However,
a solution, including an approximation was proposed for the Beltrami chart.
[23]

3. The quantum modes

Having established the background spacetime as the de Sitter spacetime,
it is evident that gravity remains classical. The background is fixed, and
as such the gravitational field is classical (not quantized). The de Sitter
background is viewed as the arena where interactions in a quantum theory
arise. Therefore, its main attribute is to shape the wave functions of the
fields on it.
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Passing from a Minkowski background to a de Sitter one, a few things are
to be noticed: first, the numbers of Killing vectors stays the same (10 for
a 3+1 dimensional manifold), so that the setting is still a maximal dimen-
sional spacetime. The introduction of the parameter ω that denotes the
cosmological (Hubble’s) constant also implies the quantities must reduce
to the Minkowski ones when this parameter vanishes. But its introduc-
tion increases the complexity of the field equations, and the first step in a
quantum theory is to find the solutions to these equations.
First, the 10 symmetries are represented by the 10 Killing vectors having
the components given by relation (4). Each of these corresponds in the
quantum theory to a conserved operator, which in the scalar field case is

XAB = −ikµAB∂µ. (8)

Specifically, the operators are:a Hamiltonian H = ωX04, three compo-
nents of the angular momentum operator Ji = iϵijkXjk, momentum Pi =
ω(Xi4 + X0i) and its dual Qi = ω(Xi4 − X0i). Also, noteworthy are the
components of a transvection operator Ri = Xi4, also called ’Runge-Lenz-
type’ operator. [24] Two comments are here in order- first, why is H called
a Hamiltonian, if on de Sitter there is no global timelike Killing vector, and
this casted doubts on the concept of energy defined in a de Sitter space-
time [25]- it is because in some charts, for instance the spatially flat FLRW
chart, ∂t is timelike, everywhere the observer in the origin can make mea-
surements. And secondly, why the choice for the momentum operator is P
and not R. In the flat limit, both give the expected Minkowski result:

lim
ω→0

Pi = lim
ω→0

ωRi = PM
i ≡ −i∂i . (9)

However, by looking at the commutation relations [Pi, Pj ] = 0, we can
observe that P is an abelian operator, and respectively [Ri, Rj ] = iϵijkJk-
from where it can be seen why it was said about R that it is a Runge-
Lenz type operator- its components form an o(4) algebra along with the
components of the angular momentum operator J.
It can be deduced that the commutation relation between the Hamiltonian
and the momentum operator components is [H,Pi] = iωPi. This means
that energy and momentum cannot be measured simultaneously on de Sit-
ter spacetime. There is a Heisenberg-like uncertainty relation between these
two observables. As such, H and P will not share common eigenfunctions.
The scalar field operator can be expanded as

Φ(x) =

∫
da db dc fabc(x)a(a, b, c) + f∗

abc(x)a
†(a, b, c), (10)

and it must obey a field equation EΦ(x) = 0. In the scalar case, this is the
Klein-Gordon equation

1√
|g|

∂µ(
√

|g|gµν∂νΦ(x))−m2Φ(x) = 0. (11)
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It must also obey a number of eigenvalue equations for a selected number of
operators A,B,C, which together with the field equation operator E form
a complete set of commuting operators (CSCO) {E , A,B,C}:

AΦ(x) = aΦ(x), BΦ(x) = bΦ(x), CΦ(x) = cΦ(x). (12)

The eigenvalues of the CSCO behave as separating constants for the solu-
tions, and their physical interpretation is that they are the values arising
from a measurement performed in accordance to the operators of the CSCO.
For the de Sitter spacetime covered with the Euclidean chart, this relates
to solving the equation(

∂2
t + 3ω∂t − e−2ωt∆x,y,z +m2

)
Φ(t, x⃗) = 0, (13)

In this chart, the momentum operator components have the simple expres-
sion

Pi = −i∂i, (14)

while the Hamiltonian is

H = i∂t − iωxi∂i. (15)

The straightforward solutions in this case are plane waves. They were
found by Nachtmann [8], and these are the ones corresponding to the CSCO
{E ,P}. However, there is another possibility for plane waves, as shown in
Ref. [11], corresponding to a CSCO that includes the H operator, in which
the authors used a time evolution technique in order to bring the form of
the Hamiltonian operator to ∂t, called ”the Schrödinger Picture” (SP). [26]
This technique is the consequence of the existence of the coordinate chart
(6).
In this picture, both the forms of the wave functions, and the operators
change as

Φ(x) → ΦS(x) = U(x)Φ(x), (16)

O → OS = U(x)OU(x)−1, (17)

where

U(x) = e−ωt(xi∂i). (18)

Particularly, expressions transform like

U(x)F (xi)U(x)−1 = F (e−ωtxi), (19)

U(x)F (∂i)U(x)−1 = F (eωt∂i), (20)

such that a coordinate transformation from the Euclidean coordinates to
the Painlevé ones is said to be equivalent to a change of picture in this
formalism.
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4. Energy basis spherical modes

In the previous section, a set of new plane waves that are eigenfunctions
of the Hamiltonian were mentioned, together with the procedure used to
determine their mathematical forms. [11] Formally, they correspond to a
CSCO {E ,H,N1,N2}, where the operators Ni are formal non-differential
operators that encode the direction of the momentum vector. Similarly, one
can find the spherical waves by solving the Klein-Gordon equation, applying
the SP formalism, but this time with a CSCO {E ,H,L2, Lz} genuinely made
up only of differential operators. [27]
First, let us formulate the Klein-Gordon equation in SP, the following con-
crete transformations, which result literally from (19-20):

∂t → ∂t + ωxi∂i, (21)

∂i → eωt∂i, (22)

∆ → e2ωt∆, (23)

Φ(t, x⃗) → ΦS(t, x⃗), (24)

which lead to the Klein-Gordon equation in the same chart, but in SP. Then,
by passing from the Cartesian coordinates {t, x⃗} to spherical coordinates
{t, r, θ, ϕ}, the following equation is obtained:(
(∂t + ωr∂r)

2 + 3ω(∂t + ωr∂r)− ∂2
r −

2

r
∂r −

∆θ,ϕ

r2
+m2

)
ΦS(t, r, θ, ϕ) = 0.

(25)
The energy basis spherical quantum modes are solutions of this equation,

and also eigenfunctions of the following operators: H, L⃗2, Lz, that insure
the separation of variables. Solving the eigenvalues equations for these

equations in the SP, for the following CSCO H = i∂t, L⃗
2 = −∆θ,ϕ, Lz =

−∆ϕ, it can be shown that the solution of the equation is separable as:

fS
E,l,ml

(t, r, θ, ϕ) = Ne−iEtRS
E,l(r)Yl,ml

(θ, ϕ), (26)

where Yl,ml
(θ, ϕ) are the two dimensional spherical harmonics.

The separation of variables occurs only in the SP, and this is the result
of applying the aforementioned time evolution picture technique. [11] In
the SP, H = i∂t is conserved, while in the NP the modified Hamiltonian
H = i∂t−iωxi∂i is conserved. The radial part of the Klein-Gordon equation
in SP is given by an ordinary differential equation

[
(ω2r2 − 1)

d2

dr2
+

(
4ω2r − 2iωEr − 2

r

)
d

dr

−E2 − 3iωE +
l(l + 1)

r2
+m2

]
RS

E,l(r) = 0, (27)
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which by discarding the solution that is singular at the origin and passing
from SP to NP, has the solution

fE,l,ml
(t, r, θ, ϕ) = Ne−iEt(ωreωt)lYl,ml

(θ, ϕ)

×2F1

(
σ+ +

l

2
, σ− +

l

2
; l +

3

2
;ω2r2e2ωt

)
, (28)

where σ± = 3
4 − iϵ

2 ± ν
2 and ν = i

√
µ2 − 9

4 and N is a normalization

constant, which can be found by writing the solution as a Hankel transform
of another function, which allows writing quantum modes in the integral
representation [27]

fE,l,ml
(t, r, θ, ϕ) = N2iϵi−

1
2
−lω

3
2 e−

ϵπ
2 πe

iπν
2

Γ
(
l + 3

2

)
Γ
(
σ+ + l

2

)
Γ
(
σ− + l

2

)
×e−

3ωt
2 Yl,ml

(θ, ϕ)
1√
r

∫ ∞

0
s−iϵH(1)

ν (se−ωt)Jl+ 1
2
(ωrs)ds, (29)

which, by using scalar product gives the desired normalization constant

N =
e

ϵπ
2

2
√
2πω

3
2

Γ
(
σ+ + l

2

)
Γ
(
σ− + l

2

)
Γ
(
l + 3

2

) . (30)

Summing up, the definitive expression of the spherical energy basis quan-
tum modes in the hypergeometric form is

fE,l,ml
(t, r, θ, ϕ) =

1

2
√
2πω

3
2

Γ
(
σ+ + l

2

)
Γ
(
σ− + l

2

)
Γ
(
l + 3

2

) e−iEt(ωreωt)l

×2F1

(
σ+ +

l

2
, σ− +

l

2
; l +

3

2
;ω2r2e2ωt

)
Yl,ml

(θ, ϕ). (31)

5. Conclusion

In this paper, we have discussed a few parameterizations on the de Sitter
hyperboloid and the relevance of the higher dimensional embedding and
symmetry in the determination of the quantum modes. A conclusion is
that the most useful charts for computing quantum modes are the ones
where symmetries are manifest. For example, on the spatially flat FLRW
chart, translational symmetries are manifest- plane waves can be defined
that could be used to write a de Sitter interacting quantum field theory
with a perturbative Feynman-Dyson formalism. [28, 29]

It has also been argued that on a chart there can be more than one useful
mode-expansion of the field operator, though it is not straightforward to
express them. The example of finding spherical energy eigenfunctions on
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the spatially flat de Sitter chart [27] is reviewed, using the time evolution
picture technique known as the ”Schrödinger Picture” formalism. These
spherical modes could potentially be used for partial wave analysis on de
Sitter spacetime. Of note is that while the energy-basis modes are differ-
ent from the momentum-basis ones, there is still no Bogolyubov mixing
and therefore the vacuum is stable under transformations from one set to
another.
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[24] I.I. Cotăescu, Gen. Rel. Grav. 43 (2011) 1639.



Aspects of Quantum Modes on de Sitter Spacetime 287

[25] E. Witten, arXiv:hep-th/0106109 (2001).
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