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Abstract

The group classification of models of axion electrodynamics with arbitrary self
interaction of axionic field is carried out. It is shown that extensions of the basic
Poincaré invariance of these models appear only for constant and exponential
interactions. The related conservation laws are discussed. Exact solutions for the
electromagnetic and axion fields are discussed including those ones which describe
propagation with group velocities faster than the speed of light. However these
solutions are causal since the corresponding energy velocities are subluminal.

1. Introduction

The group analysis of PDEs is a fundamental field including many inter-
esting internal problems. But maybe the most attractive feature of the
group analysis is its great value for various applications such as defining
of maximal Lie symmetries of complicated physical models, construction
of models with a priory requested symmetries, etc. Sometimes the group
analysis is the only way to find exact solutions for nonlinear problems.

In the present paper we make the group classification of the field equations
of axion electrodynamics with arbitrary self interaction of axion field. The
considered model includes the standard axion electrodynamics as a par-
ticular case. We prove that an extension of the basic Poincaré invariance
appears only for the exponential, constant and trivial interaction terms.

Let us present physical motivations of this research. To explain the absence
of the CP symmetry violation in interquark interactions Peccei and Quinn
[1] suggested that a new symmetry must be present. The breakdown of
this gives rise to the axion field proposed later by Weinberg [2] and Wilczek
[3]. And it was Wilczek who presented the first analysis of possible effects
caused by axions in electrodynamics [4].

Axions belong to the main candidates to form the dark matter, see, e.g., [5]
and references cited therein. New arguments for the materiality of axion
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theories were created in solid states physics. Namely, it was found recently
[6] that the axionic-type interaction terms appear in the theoretical descrip-
tion of a class of crystalline solids called topological insulators. In other
words, although their existence is still not confirmed experimentally axions
are stipulated at least in the three fundamental fields: QCD, cosmology
and condensed matter physics. That is why we decide to make group anal-
ysis of axionic theories and find in some sense completed set of the related
exact solutions.

2. Field equations of axion electrodynamics

We start with the following model Lagrangian:

L =
1

2
pµp

µ − 1

4
FµνF

µν +
κ

4
θFµνF̃

µν − V (θ). (1)

Here Fµν is the strength tensor of electromagnetic field, F̃µν = 1
2εµνρσF

ρσ,
pµ = ∂µθ, θ is the pseudoscalar axion field, V (θ) is a function of θ, κ is a
dimensionless constant, and the summation is imposed over the repeating
indices over the values 0, 1, 2, 3. Moreover, the strength tensor can be
expressed via the four-potential A = (A0, A1, A2, A3) as:

Fµν = ∂µAν − ∂νAµ. (2)

Setting in (1) θ = 0 we obtain the Lagrangian for Maxwell field. Moreover,
if θ is a constant then (1) coincides with the Maxwell Lagrangian up to
constant and four-divergence terms. Finally, the choice V (θ) = 1

2m
2θ2

reduces L to the standard Lagrangian of axion electrodynamics.

We will investigate symmetries of the generalized Lagrangian (1) with ar-
bitrary V (θ). More exactly, we will make the group classification of the
corresponding Euler-Lagrange equations:

∇ ·E = κp ·B,
∂0E−∇×B = κ(p0B + p×E), (3)

∇ ·B = 0, ∂0B +∇×E = 0,

2θ = −κE ·B + F, (4)

where

B = {B1, B2, B3}, E = {E1, E2, E3}, Ea = F 0a, Ba =
1

2
εabcFbc,

F =
∂ϕ

∂θ
, 2 = ∂20 −∇2, ∂i =

∂

∂xi
, p0 =

∂θ

∂x0
, p = ∇θ.
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3. Group classification of systems (3)–(4)

Equations (3)–(4) include an arbitrary function F (θ) so we can expect
that the variety of symmetries of this system depends on the explicit form
of F . The group classification of these equations presupposes finding their
symmetry groups for arbitrary F .

The maximal continuous symmetry of system (3)–(4) with arbitrary func-
tion F (θ) is given by Poincaré group P (1, 3). Infinitesimal generators of
this group take the following form:

P0 = ∂0, Pa = ∂a,

Jab = xa∂b − xb∂a +Ba∂Bb −Bb∂Ba + Ea∂Eb − Eb∂Ea , (5)

J0a = x0∂a + xa∂0 + εabc

(
Eb∂Bc −Bb∂Ec

)
,

where εabc is the unit antisymmetric tensor, a, b, c = 1, 2, 3.

Operators (5) form a basis of the Lie algebra p(1,3) of the Poincaré group.

For some special functions F (θ) symmetry of system (3)–(4) appears to be
more extended. Namely, if F = 0, F = c or F = beaθ then the basis (5)
of symmetry algebra of this system is extended by the following additional
operators P4, D and X:

P4 = ∂θ, D = x0∂0 + xi∂i −
1

2
Fµν∂Fµν if F (θ) = 0,

P4 = ∂θ if F (θ) = c, (6)

X = aD − 2P4 if F (θ) = beaθ.

Operator P4 generates shifts of dependent variable θ, D is the dilatation
operator generating a consistent scaling of dependent and independent vari-
ables, and X generates the simultaneous shift and scaling. Note that ar-
bitrary parameters a, b and c can be reduced to the fixed values a = ±1,
b = ±1 and c = ±1 by scaling dependent and independent variables.

Thus the continues symmetries of system (3)–(4) where F (θ) is an arbitrary
function of θ are exhausted by the Poincaré group. The same symmetry is
accepted by the standard equations of axion electrodynamics which corre-
spond to F (θ) = −m2θ. In the cases indicated in (6) we have the extended
Poincaré groups.

4. Conservation laws

An immediate consequence of symmetries presented above is the existence
of conservation laws. Indeed, the system (3)–(4) admits a Lagrangian for-
mulation. Thus, in accordance with the Noether theorem, symmetries of
equations (3)–(4) which keep the shape of Lagrangian (1) up to four di-
vergence terms should generate conservation laws. Let us present them
explicitly.
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First we represent generators (5) and (6) written in terms of the variational
variables Aµ and A4 = θ in the following unified form

Q = ξµ∂µ + ϕτ∂Aτ , (7)

where the summation is imposed over the values τ = 0, 1, 2, 3, 4 and µ =
0, 1, 2, 3.

Conserved current corresponding to symmetry (7) can be represented as
[7]:

Jσ = ϕτ
∂L

∂(∂σAτ )
+ ξσL− ξν∂νAτ

∂L

∂(∂σAτ )
. (8)

The basic conserved quantity is the energy momentum tensor which corre-
sponds to symmetries Pµ presented in (5). In this case ϕτ ≡ 0 and ξµ = 1.
Starting with (1) and using three dimensional notations

F0a = Ea, Fab = εabcBc, (9)

we find the conserved energy momenta tensor in the following form

T 00 =
1

2
(E2 + B2 + p20 + p2) + V (θ),

T 0a = T a0 = εabcEbBc + p0pa, (10)

T ab = −EaEb −BaBb + papb +
1

2
δab(E2 + B2 + p20 − p2 − 2V (θ)).

The tensor Tµν is symmetric and satisfies the continuity equation ∂νT
µν = 0.

Its components T 00 and T 0a are associated with the energy and momentum
densities.

It is important to note that the energy momentum tensor does not depend

on parameter κ and so it is not affected by the term κ
4θFµνF̃

µν present in
Lagrangian (1). In fact this tensor is nothing but a sum of energy momenta
tensors for the free electromagnetic field and scalar field. Moreover, the
interaction of these fields between themselves is not represented in (10).

5. Selected exact solutions

The field equations of axion electrodynamics form a rather complicated
system of nonlinear partial differential equations. However, this system
admits the extended symmetry algebra, i.e., p(1,3), which makes it possible
to find a number of exact solutions. Here we present some of these solutions
while the completed list of them can be found in [8].

The algorithm for construction of group solutions of partial differential
equations goes back to Sophus Lie and is expounded in various monographs,
see, e.g., [7]. Roughly speaking, to find such solutions we have to change
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the dependent and independent variables by invariants of the subgroups of
our equations symmetry group. Solving equations (3)–(4) it is reasonable
to restrict ourself to three-parametrical subgroups which make it possible to
reduce (3)–(4) to systems of ordinary differential equations. The complete
list of these subgroups can be found in [9].

To make solutions of equations (3)–(4) more physically transparent, we
write them in terms of electric field E and magnetic field B whose com-
ponents are expressed via the strengths tensor Fµν as shown in (9). In
addition, we rescale the dependent variables such that κ→ 1.

5.1. Plane wave solutions

Let us present solutions of system (3)–(4) which are invariant w.r.t. sub-
algebras of p(1,3) whose basis elements have the following unified form:
〈P1, P2, kP0 + εP3〉 where ε and k are parameters satisfying ε2 6= k2, while
P1, P2, P3 and P0 are generators given in (1).

The invariants ω of the corresponding three-parametrical group should solve
the equations

P1ω = 0, P2ω = 0, (kP0 + εP3)ω = 0. (11)

Solutions of (11) include all dependent variables Ea, Ba, θ (a = 1, 2, 3) and
the only independent variable ω = εx0 − kx3. Thus we can search for
solutions which are functions of ω only. As a result we reduce equations
(3)–(4), (9) to the system of ordinary differential equations whose solutions
are:

B1 = −kc1θ, B2 = εc1 + kc2, B3 = c3,

E1 = εc2 + kc1, E2 = εc1θ, E3 = c3θ − c4(ε2 − k2),
(12)

where c1, ..., c4 are arbitrary real numbers. The corresponding bounded
solutions of equation (4) with F = −m2θ are

θ = aµ cosµω + rµ sinµω +
c3c4
µ2

, (13)

where aµ, rµ and µ are arbitrary constants restricted by the following con-
straint

µ2 =

(
c21 +

c23 +m2

ε2 − k2

)
. (14)

Notice that for the simplest non-linear function F = λθ2 equation (4) is
reduced to Weierstrass equation and admits a nice soliton-like solution

θ =
c3c4

2
tanh2 (ω + C) , (15)
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where C is an integration constant. The related parameters ε, k and λ
should satisfy the conditions

ε2 = k2 +
c23

8− c21
, λc3c4 = 12. (16)

The corresponding magnetic, electric and axion fields are localized waves
moving along the third coordinate axis.

In analogous (but as a rule much more complicated) way we can find so-
lutions corresponding to the other three-dimensional subalgebras of the
Poincaré algebra. One more and rather specific solution of equations (3)–
(4) with κ = 1 and F = 0 (obtained with using the subalgebra spanned on
basis elements 〈J12 + kP0 + εP1, P2, P3〉) can be written as follows:

E1 = ε(ck sin(ω)− dk cos(ω)), E2 = ε(ck cos(ω) + dk sin(ω)),

E3 = e, B1 = −k
εE2, B2 = k

εE1, B3 = 0, θ = αx0 + νx3 + µ,
(17)

where e, ck, dk, ε, k, α, ν, µ are constants satisfying the following conditions

ε2 − k2 = νε− αk, ε 6= 0. (18)

Solutions (17) depend on two different plane wave variables, i.e., ω = εx0−
kx1 and αx0 + νx1. They satisfy the superposition principle since a sum of
solutions with different ε, k, ck and dk is also a solution of equations (3)–(4)
with κ = 1 and F = 0. Thus it is possible to generate much more general
solutions by summing up functions (17) over k and treating ck and dk as
arbitrary functions of k.

5.2. Radial and planar solutions

Consider solutions which include the Coulomb electric field. They can be
obtained using invariants of the subalgebra spanned on 〈J12, J23, J31〉 and
have the following form

Ba =
c1xa
r3

, Ea =
(c1θ − c2)xa

r3
, θ =

ϕ

r
, (19)

where ϕ is a function of x0 and r =
√
x21 + x22 + x23 satisfying the following

equation

∂2ϕ

∂r2
− ∂2ϕ

∂x20
=

(
c21
r4

+m2

)
ϕ− c1c2

r3
. (20)

Setting in (19) c1 = 0 we come to the electric field of point charge which
is well defined for r > 0. A particular solution for (20) corresponding to
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c1 = −q2 < 0 and c2 = 0 is ϕ = c3r sin(mx0)e
− q2

r which gives rise to the
following field components

Ba = −q
2xa
r3

, Ea = −q
2θxa
r3

, θ = c3 sin(mx0)e
− q2

r . (21)

The components of magnetic field Ba are singular at r = 0 while Ea and θ
are bounded for 0 ≤ r ≤ ∞.

Separating variables it is possible to find the general solution of equa-
tion (20), see [8].

One more solution of equations (3)–(4) for F = 0 with a radial electric field
is

Ea =
xa
r2
. (22)

The corresponding magnetic and axion fields take the following forms

B1 =
x1x3
r2x

, B2 =
x2x3
r2x

, B3 = − x
r2
, θ = arctan

(
x

x3

)
,

where x =
√
x21 + x22.

The electric field (22) is requested in the superintegrable model with Fock
symmetry proposed in [10].

Let us present planar solutions which depend on spatial variables x1 and
x2. Namely, the functions

E1 = x1
(
c1x

c3−2 + c2x
−2−c3) , E2 = x2

(
c1x

c3−2 + c2x
−2−c3) ,

B1 = x2
(
c1x

c3−2 − c2x−2−c3) , B2 = x1
(
c2x

−2−c3 − c1xc3−2
)
, (23)

E3 = 0, B3 = 0, θ = c3 arctan
x2
x1

+ c4,

where c1, ..., c4 are arbitrary parameters, solve equations (3)–(4) with κ = 1
and F = 0.

Solutions (23) can be found with using invariants of a subgroup of the ex-
tended Poincaré group whose Lie algebra is spanned on the basis
〈P0, P3, J12 + P4〉, see equations (5), (6) for definitions.

6. Phase, group and energy velocities

In this section we consider some of found solutions in more details and
discuss the propagation velocities of the corresponding fields. There are
various notions of field velocities, see, e.g., [11, 12, 13]. We shall discuss
the phase, group and energy velocities.
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Let us start with the plane wave solutions given by equations (12) and
(13). They describe oscillating waves moving along the third coordinate
axis. Setting for simplicity c2 = c3 = c4 = rµ = 0 we obtain

B1 = c1kθ, B2 = −c1ε, B3 = 0, E1 = −c1k,
E2 = −c1εθ, E3 = 0, θ = aµ cos(µ(εx0 − kx3)).

(24)

Here ε, k, and aµ are arbitrary parameters which, in accordance with (14),
should satisfy the following dispersion relations

(ε2 − k2)(µ2 − c21) = m2. (25)

If m 6= 0 the version µ2 = c21 is forbidden, and we have two qualitatively
different possibilities: µ2 > c21 and µ2 < c21.

Let µ2 > c21 then (ε2 − k2) = m2

µ2−c21
> 0. The corresponding group velocity

Vg is equal to the derivation of ε w.r.t. k, i.e.,

Vg =
∂ε

∂k
=
k

ε
. (26)

Since ε > k, the group velocity appears to be less than the velocity of light
(remember that we use the Heaviside units in which the velocity of light is
equal to 1).

On the other hand the phase velocity Vp = ε
k is larger than the velocity of

light, but this situation is rather typical in relativistic field theories.

In the case µ2 < c21 the wave number k is larger than ε. As a result the
group velocity (26) exceeds the velocity of light, and we have a phenomenon
of superluminal motion. To understand wether the considered solutions are
causal let us calculate the energy velocity which is equal to the momentum
density divided by the energy density

Ve =
T 03

T 00
. (27)

Substituting (24) into (10) we find the expressions for T 00 and T 03:

T 00 =
1

2
(ε2 + k2)Φ +

1

2
m2θ2, T 03 = εkΦ,

where Φ = c21(θ
2 + 1) + µ2(a2µ − θ2). Thus

Ve =
2εkΦ

(ε2 + k2)Φ + 1
2m

2θ2
<

2εk

ε2 + k2
< 1, (28)

and this relation is valid for ε > k and for ε < k as well.

We see that the energy velocity is less than the velocity of light. Thus
solutions (24) can be treated as causal in spite of the fact that for µ2 < c21
the group velocity is superluminal.
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7. Conclusions

We have performed group classification of field equations of axion electro-
dynamics (3)–(4) which include an arbitrary function F depending on θ,
and have found the conservation laws generated by these equations. Exact
solutions corresponding to three-dimensional subalgebras of the Poincaré
algebra have been found and presented in [8]. There are 32 types of such
solutions defined up to arbitrary constants or arbitrary functions. Some
of these solutions can have interesting applications, e.g., for construction
of exactly solvable problems for Dirac fermions. Solutions describing the
faster-than-light propagation are admissible. However, these solutions are
causal since the corresponding energy velocity is subluminal.
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