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Abstract

In the present paper we continue the programme of systematic construction of
invariant differential operators on the example of the non-compact groups Sp(n,R).
Earlier in arXiv:1205.5521 we gave the main multiplets and the main reduced
multiplets of indecomposable elementary representations including the necessary
data for all relevant invariant differential operators. Here we give the special
reduced multiplets and the minimal representations of Sp(n,R).

1. Introduction

Invariant differential operators play very important role in the description
of physical symmetries. For the modern applications of (super-)differential
operators in conformal field theory, supergravity and string theory we refer,
e.g., to [1].

In a recent paper [2] we started the systematic explicit construction of in-
variant differential operators. We gave an explicit description of the build-
ing blocks, namely, the parabolic subgroups and subalgebras from which
the necessary representations are induced. Thus we have set the stage for
study of different non-compact groups.

In the present paper we focus on the groups Sp(n, IR), which are very
interesting for several reasons. First of all, they belong to the class of Her-
mitian symmetric spaces, i.e., the pair (G,K) is a Hermitian symmetric pair
(K is the maximal compact subgroup of the noncompact semisimple group
G). These groups have discrete series representations and highest/lowest
weight representations. Further, Sp(n, IR) belong to a narrower class of
groups/algebras, which we call ’conformal Lie groups or algebras’ since they
have very similar properties to the canonical conformal algebras so(n, 2) of
n-dimensional Minkowski space-time. This class was identified from our
point of view in [3]. Besides so(n, 2) it includes the algebras su(n, n),
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sp(n, IR), so∗(4n), E7(−25) . The same class was identified independently
from different considerations and under different names in [4, 5, 6].

This paper is a sequel of [7], based on Invited talk at the VII Mathematical
Physics Meeting, Belgrade, 9-19.9.2012. Due to the lack of space we refer
to [7] for motivations and extensive list of literature on the subject.

The present paper is organized a follows. In section 2 we give the prelimi-
naries, actually recalling and adapting facts from [2] to the sp(n, IR) case.
In Section 3 we present the special reduced multiplets n = 2, ..., 6 and
the intertwining differential operators between the ERs. In Section 4 we
discuss the general features of our results which generalize for arbitrary n.
We also present an Outlook.

2. Preliminaries

Let n ≥ 2. Let G = sp(n, IR), the split real form of sp(n,CI ) = GCI . The
maximal compact subgroup of G is K ∼= u(1)⊕ su(n).

We choose a maximal parabolic P =MAN such that A ∼= so(1, 1), while
the factor M = sl(n, IR) has the same finite-dimensional (nonunitary)
representations as the finite-dimensional (unitary) representations of the
semi-simple subalgebra su(n) of K . Thus, these induced representations
are representations of finite K-type [8]. Note also that KCI ∼= u(1)CI ⊕
sl(n,CI ) ∼=MCI ⊕ACI . Finally, note that dimIR N = n(n+ 1)/2.

We label the signature of the ERs of G as follows:

χ = {n1 , . . . , nn−1 ; c } , nj ∈ IN , c = d− (n+ 1)/2 (1)

where the last entry of χ labels the characters of A , and the first n − 1
entries are labels of the finite-dimensional nonunitary irreps of M , (or of
the finite-dimensional unitary irreps of su(n)).

Below we shall use the following conjugation on the finite-dimensional en-
tries of the signature:

(n1, . . . , nn−1)
∗ .

= (nn−1, . . . , n1) (2)

We call the above induced representations χ = IndGP(µ⊗ν⊗1) elementary
representations [9] of G = Sp(n, IR). (These are called generalized principal
series representations (or limits thereof) in [10].) Their spaces of functions
are:

Cχ = {F ∈ C∞(G,Vµ) | F(gm̂ân̂) = e−ν(H) ·Dµ(m̂−1)F(g)}

where â = exp(H), H ∈ A , m̂ ∈ M = SL(n, IR), n̂ ∈ N = expN . The
representation action is the left regular action:

(T χ(g)F)(g′) = F(g−1g′) , g, g′ ∈ G . (3)
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• An important ingredient in our considerations are the highest/lowest
weight representations of GCI . These can be realized as (factor-modules
of) Verma modules V Λ over GCI , where Λ ∈ (HCI)∗, HCI is a Cartan
subalgebra of GCI , weight Λ = Λ(χ) is determined uniquely from χ [11].

Actually, since our ERs are induced from finite-dimensional representations
of M the Verma modules are always reducible. Thus, it is more conve-
nient to use generalized Verma modules Ṽ Λ such that the role of the
highest/lowest weight vector v0 is taken by the (finite-dimensional) space
Vµ v0 . For the generalized Verma modules (GVMs) the reducibility is con-
trolled only by the value of the conformal weight d, or the parameter c.
Relatedly, for the intertwining differential operators only the reducibility
w.r.t. non-compact roots is essential.

• Another main ingredient of our approach is as follows. We group the
(reducible) ERs with the same Casimirs in sets called multiplets [12]. The
multiplet corresponding to fixed values of the Casimirs may be depicted
as a connected graph, the vertices of which correspond to the reducible
ERs and the lines (arrows) between the vertices correspond to intertwining
operators. The multiplets contain explicitly all the data necessary to con-
struct the intertwining differential operators. Actually, the data for each
intertwining differential operator consists of the pair (β,m), where β is a
(non-compact) positive root of GCI , m ∈ IN , such that the BGG Verma
module reducibility condition [13] (for highest weight modules) is fulfilled:

(Λ + ρ, β∨) = m , β∨ ≡ 2β/(β, β) (4)

where ρ is half the sum of the positive roots of GCI . When the above holds
then the Verma module with shifted weight V Λ−mβ (or Ṽ Λ−mβ for GVM

and β non-compact) is embedded in the Verma module V Λ (or Ṽ Λ). This
embedding is realized by a singular vector vs expressed by a polynomial
Pm,β(G−) in the universal enveloping algebra (U(G−)) v0 , G− is the

subalgebra of GCI generated by the negative root generators [14]. More
explicitly, [11], vsm,β = Pm,β v0 (or vsm,β = Pm,β Vµ v0 for GVMs).

Then there exists [11] an intertwining differential operator of order m =
mβ :

Dm,β : Cχ(Λ) −→ Cχ(Λ−mβ) (5)

given explicitly by:

Dm,β = Pm,β(Ĝ−) (6)

where Ĝ− denotes the right action on the functions F .

Thus, in each such situation we have an invariant differential equation of
order m = mβ :

Dm,β f = f ′ , f ∈ Cχ(Λ) , f ′ ∈ Cχ(Λ−mβ) . (7)
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In most of these situations the invariant operator Dm,β has a non-trivial
invariant kernel in which a subrepresentation of G is realized. Thus, study-
ing the equations with trivial RHS:

Dm,β f = 0 , f ∈ Cχ(Λ) , (8)

is also very important. For example, in many physical applications in the
case of first order differential operators, i.e., for m = mβ = 1, equations
(8) are called conservation laws, and the elements f ∈ kerDm,β are called
conserved currents.

The ERs in the multiplet are related also by intertwining integral operators.
The integral operators were introduced by Knapp and Stein [15]. In fact,
these operators are defined for any ER, not only for the reducible ones, the
general action being:

GKS : Cχ −→ Cχ′ ,
χ = {n1, . . . , nn−1 ; c } , χ′ = { (n1, . . . , nn−1)

∗ ; −c } (9)

The above action on the signatures is also called restricted Weyl reflection,
since it represents the nontrivial element of the 2-element restricted Weyl
group which arises canonically with every maximal parabolic subalgebra.
Generically, the Knapp-Stein operators can be normalized so that indeed
GKS ◦ GKS = IdCχ . However, this usually fails exactly for the reducible
ERs that form the multiplets, cf., e.g., [9].

Further, we need more explicitly the root system of the algebra sp(n, F ),
F = CI , IR. In terms of the orthonormal basis ϵi , i = 1, . . . , n, the positive
roots are given by

∆+ = {ϵi ± ϵj , 1 ≤ i < j ≤ n; 2ϵi, 1 ≤ i ≤ n}, (10)

while the simple roots are:

π = {αi = ϵi − ϵi+1, 1 ≤ i ≤ n− 1; αn = 2ϵn} (11)

With our choice of normalization of the long roots 2ϵk have length 4, while
the short roots ϵi ± ϵj have length 2.

From these the compact roots are those that form (by restriction) the root
system of the semisimple part of KCI , the rest are noncompact, i.e.,

compact : αij ≡ ϵi − ϵj , 1 ≤ i < j ≤ n ,
noncompact : βij ≡ ϵi + ϵj , 1 ≤ i ≤ j ≤ n (12)

Thus, the only non-compact simple root is αn = βnn .

Further, we shall use the so-called Dynkin labels:

mi ≡ (Λ + ρ, α∨
i ) , i = 1, . . . , n, (13)
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where Λ = Λ(χ), ρ is half the sum of the positive roots of GCI .
We shall use also the so-called Harish-Chandra parameters:

mβ ≡ (Λ + ρ, β) , (14)

where β is any positive root of GCI . These parameters are redundant, since
they are expressed in terms of the Dynkin labels, however, some state-
ments are best formulated in their terms. In particular, in the case of the
noncompact roots we have:

mβij
=

( n∑
s=i

+
n∑

s=j

)
ms , i < j ; mβii

=
n∑

s=i

ms (15)

Finally, we give the correspondence between the signatures χ and the high-
est weight Λ. The explicit connection is:

ni = mi , c = − 1
2(mα̃ +mn) = − 1

2(m1 + · · ·+mn−1 + 2mn) (16)

where α̃ = β11 is the highest root.

3. Special reduced multiplets and minimal UIRs

There are several types of multiplets: the main type, (which contains max-
imal number of ERs/GVMs, the finite-dimensional and the discrete series
representations), and various reduced types of multiplets. The multiplets of
the main type are in 1-to-1 correspondence with the finite-dimensional ir-
reps of sp(n, IR), i.e., they will be labelled by the n positive Dynkin labels
mi ∈ IN . As we mentioned, each main multiplet contains 2n ERs/GVMs.
It is difficult to give explicitly the multiplets for general n. Thus, in the
paper [7] we gave for sp(n, IR), n = 6, the the main type of multiplets and
the main reduced types (which depend on n− 1 parameters). In fact, this
gives by reduction also the cases for n < 6, since the main multiplet for
fixed n coincides with one reduced case for n+ 1.

In the present paper we give for n = 2, ..., 6 the special reduced multiplets
which depend on n− 1 positive integers and one positive odd integer.

3.1. The case sp(2,IR)

The material of this subsection is contained in [16] and [17] and is given
here to set the stage for the higher rank cases.

The main multiplets R2
m of sp(2, IR) contain 4(= 22) ERs/GVMs whose

signatures were given in [16] in the following pair-wise manner:

χ±
0 = {m1 ;

3
2 ±

1
2(m1 + 2m2) } (17)

χ±
a = {m1 + 2m2 ;

3
2 ±

1
2m1 }
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The multiplets are given explicitly in Fig. 1. where we use the notation:
Λ± = Λ(χ±). Each intertwining differential operator is represented by
an arrow accompanied by a symbol ij...k encoding the root βj...k and
the number mβj...k

which is involved in the BGG criterion. This notation is
used to save space, but it can be used due to the fact that only intertwining
differential operators which are non-composite are displayed, and that the
data β,mβ , which is involved in the embedding V Λ ←→ V Λ−mβ ,β turns
out to involve only the mi corresponding to simple roots, i.e., for each
β,mβ there exists i = i(β,mβ,Λ) ∈ {1, . . . , 2n− 1}, such that mβ = mi .
Hence the data βj...k , mβj...k

is represented by ij...k on the arrows.

The pairs Λ± of (26) in Figure 1. are symmetric w.r.t. to the bullet in
the middle of the figure - this represents the Weyl symmetry realized by
two Knapp-Stein integral operators (9):

G±
KS : CΛ∓ −→ CΛ± . (18)

In [16] and [17] the same multiplet was given with the Knapp-Stein op-
erators displayed explicitly - see Figure 2. The differential operators are
denoted by arrows, the integral operators - by dashed arrows. We see that
the Knapp-Stein operator from CΛ−

a
to CΛ+

a
is degenerated to the differ-

ential operator denoted by 112 . Certainly, the latter degeneration is seen
already in Figure 1 from the symmetry w.r.t. the bullet in the centre of
the figure.

For further use we denote as D± the invariant subspaces of CΛ± such
that D± is the image of G±

KS and the kernel of G∓
KS . This feature is

common for all sp(n).

The special reduced multiplets R2
s also contain 4 ERs/GVMs whose signa-

tures are given in the following pair-wise manner:

χ±
0 = {m1 ;

3
2 ±

1
2(m1 + µ) } (19)

χ±
a = {m1 + µ ; 3

2 ±
1
2m1 }

where µ ∈ 2IN − 1. The multiplets are given explicitly in Fig. 3.

Furthermore, as in the main multiplet these representations have all the
same Casimirs, but none of them contains a finite-dimensional irrep. Nei-
ther the are related as in the quartet since there are no analogs of the
operators from χ−

0 to χ−
a or from χ+

a to χ+
0 . In terms of the quartet dia-

gram on Figure 2, only the horizontal lines/arrows remain valid.

Thus, although superficially there are three connected components in the
Figure, taking into account the Knapp-Stein operators each multiplet con-
tains two connected components, or submultiplets:
• a doublet consisting of Λ±

0 ;
• a doublet consisting of Λ±

a .

Next we recall from [18] following the exposition in [17] that each ER χ+
0 of

(17) contains both a holomorphic discrete series irrep and its conjugate
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anti-holomorphic discrete series irrep. The direct sum of the representation
spaces of these two irreps is the invariant subspace D+

0 of CΛ+
0

mentioned

above. The statement about the disposition of the (anti)holomorphic dis-
crete series in the the ERs χ+

0 of the main multiplets is valid for all n.
In particular, the corresponding lowest value of the conformal weight is
d = n+ 1 which equals the dimension of the corresponding space-time.

For the lack of space we do not discuss the disposition of the (anti)holo-
morphic discrete series, the first reduction point (FRP), and other positive
energy irreps except the minimal UIRs [19]. Here the latter are two special
irreps discovered by Dirac [20] and called ’singletons’ or ’Di’ and ’Rac’ in
[21]:

Rac : (d, s0) = (1/2, 0) , Di : (d, s0) = (1, 1/2) . (20)

Both are situated in the special reduced multiplets: the ’Rac’ is situated
in the ER/GVM χ−

0 of (19) with m1 = µ = 1, while the ’Di’ in the
ER/GVM χ−

a of (19) with m1 = µ = 1.

3.2. The case sp(3,IR)

The main multiplets R3
m of sp(3, IR) contain 8(= 23) ERs/GVMs whose

signatures are given in the following pair-wise manner:

χ±
0 = { (m1,m2)

± ; 2± 1
2(m12 + 2m3) } (21)

χ±
a = { (m1,m2 + 2m3)

± ; 2± 1
2m12 }

χ±
b = { (m12,m2 + 2m3)

± ; 2± 1
2m1 }

χ±
c = { (m2,m12 + 2m3)

± ; 2∓ 1
2m1 }

and the notation (...)± employs the conjugation (2) :

(n1, ..., nn−1)
− = (n1, ..., nn−1) , (n1, ..., nn−1)

+ = (n1, ..., nn−1)
∗

The multiplets are given explicitly in Fig. 4.

The special reduced multiplets R3
s also contain 8 ERs/GVMs whose signa-

tures are given in the following pair-wise manner:

χ±
0 = { (m1,m2)

± ; 2± 1
2(m12 + µ) } (22)

χ±
a = { (m1,m2 + µ)± ; 2± 1

2m12 }
χ±
b = { (m12,m2 + µ)± ; 2± 1

2m1 }
χ±
c = { (m2,m12 + µ)± ; 2∓ 1

2m1 }

where µ ∈ 2IN − 1. The multiplets are given explicitly in Fig. 5.

Taking into account the Knapp-Stein operators then each such multiplet
contains two connected components, or submultiplets:
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• a doublet consisting of Λ±
0 ;

• a submultiplet of 6 ERs/GVMs consisting of Λ±
a , Λ±

b , Λ±
c .

There are three minimal UIRs situated in Λ−
0 , Λ−

a and Λ+
c with m1 =

m2 = µ = 1 :
• The one in Λ−

0 has trivial su(3) irrep and d = 1
2 .

• The one in Λ−
a has three-dimensional su(3) irrep and d = 1.

• The one in Λ+
c has six-dimensional su(3) irrep and d = 3

2 .

Note that Λ−
a and Λ+

c are in the same connected component - this feature
is commented in Section 4.

3.3. The case sp(4,IR)

The main multiplets R4
m of sp(4, IR) contain 16(= 24) ERs/GVMs whose

signatures are given in the following pair-wise manner:

χ±
0 = { (m1,m2,m3)

± ; ±1
2(m13 + 2m4) } (23)

χ±
a = { (m1,m2,m3 + 2m4)

± ; ±1
2m13 }

χ±
b = { (m1,m23,m3 + 2m4)

± ; ±1
2m12 }

χ±
c = { (m12,m3,m23 + 2m4)

± ; ±1
2m1 }

χ±
d = { (m2,m3,m13 + 2m4)

± ; ∓1
2m1 }

χ±
e = { (m2,m3 + 2m4,m13)

± ; ∓1
2m1 }

χ±
f = { (m12,m3 + 2m4,m23)

± ; ±1
2m1 }

χ±
g = { (m1,m23 + 2m4,m3)

± ; ±1
2m12 }

The multiplets are given explicitly in Fig. 3.

The special reduced multiplets R4
s also contain 16 ERs/GVMs whose sig-

natures are given in the following pair-wise manner:

χ±
0 = { (m1,m2,m3)

± ; 5
2 ±

1
2(m13 + µ) } (24)

χ±
a = { (m1,m2,m3 + µ)± ; 5

2 ±
1
2m13 }

χ±
b = { (m1,m23,m3 + µ)± ; 5

2 ±
1
2m12 }

χ±
c = { (m12,m3,m23 + µ)± ; 5

2 ±
1
2m1 }

χ±
d = { (m2,m3,m13 + µ)± ; 5

2 ∓
1
2m1 }

χ±
e = { (m2,m3 + µ,m13)

± ; 5
2 ∓

1
2m1 }

χ±
f = { (m12,m3 + µ,m23)

± ; 5
2 ±

1
2m1 }

χ±
g = { (m1,m23 + µ,m3)

± ; 5
2 ±

1
2m12 }

where µ ∈ 2IN − 1. The multiplets are given explicitly in Fig. 3s.

Taking into account the Knapp-Stein operators then each such multiplet
contains three connected components, or submultiplets:
• a doublet consisting of Λ±

0 ;
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• a submultiplet of 8 ERs/GVMs consisting of Λ±
a , Λ±

b , Λ±
c , Λ±

d ;

• a submultiplet of 6 ERs/GVMs consisting of Λ±
e , Λ±

f , Λ±
g .

There are four minimal UIRs situated in Λ−
0 , Λ−

a , Λ+
d , and Λ−

g with
m1 = m2 = m3 = µ = 1 :
• The one in Λ−

0 has have trivial su(4) irrep and d = 1
2 .

• The one in Λ−
a has fundamental su(4) irrep and d = 1.

• The one in Λ−
g has 20-dimensional su(4) irrep and d = 3

2 .

• The one in Λ+
d has another 20-dimensional su(4) irrep and d = 2.

Note that Λ−
a and Λ+

d are in the same connected component.

3.4. The case sp(5,IR)

The main multiplets R5
m of sp(5, IR) contain 32(= 25) ERs/GVMs whose

signatures were given in [7]. The special reduced multiplets R5
s also con-

tain 32 ERs/GVMs whose signatures are given in the following pair-wise
manner:

χ±
0 = { (m1,m2,m3,m4)

± ; ±1
2(m14 + µ) } (25)

χ±
a = { (m1,m2,m3,m4 + µ)± ; ±1

2m14 }
χ±
b = { (m1,m2,m34,m4 + µ)± ; ±1

2m13 }
χ±
c = { (m1,m23,m4,m34 + µ)± ; ±1

2m12 }
χ±
c′ = { (m1,m2,m34 + µ,m4)

± ; ±1
2m13 }

χ±
d = { (m12,m3,m4,m24 + µ)± ; ±1

2m1 }
χ±
d′ = { (m1,m23,m4 + µ,m34)

± ; ±1
2m12 }

χ±
e = { (m2,m3,m4,m14 + µ)± ; ∓1

2m1 }
χ±
e′ = { (m12,m3,m4 + µ,m24)

± ; ±1
2m1 }

χ±
e′′ = { (m1,m24,m4 + µ,m3)

± ; ±1
2m12 }

χ±
f = { (m2,m3,m4 + µ,m14)

± ; ∓1
2m1 }

χ±
f ′ = { (m12,m34,m4 + µ,m23)

± ; ±1
2m1 }

χ±
f ′′ = { (m1,m24 + µ,m4,m3)

± ; ±1
2m12 }

χ±
g = { (m2,m34,m4 + µ,m13)

± ; ∓1
2m1 }

χ±
g′ = { (m12,m34 + µ,m4,m23)

± ; ±1
2m1 }

χ±
h = { (m2,m34 + µ,m4,m13)

± ; ∓1
2m1 }

where µ ∈ 2IN − 1. The multiplets are given explicitly in Fig. 2s.

Taking into account the Knapp-Stein operators then each such multiplet
contains three connected components, or submultiplets:
• a doublet consisting of Λ±

0 ;
• a submultiplet of 10 ERs/GVMs starting with Λ−

a ;
• a submultiplet of 20 ERs/GVMs starting with Λ−

c′ .
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There are five minimal UIRs situated in Λ−
0 , Λ−

a , Λ+
e , Λ−

c′ and Λ−
f ′′ with

m1 = m2 = m3 = m4 = µ = 1 :
• The one in Λ−

0 has have trivial su(5) irrep and d = 1
2 .

• The one in Λ−
a has fundamental su(5) irrep and d = 1.

• The one in Λ−
c′ has 50-dimensional su(5) irrep and d = 3

2 .

• The one in Λ−
f ′′ has 175-dimensional su(5) irrep and d = 2.

• The one in Λ+
e has 70-dimensional su(5) irrep and d = 5

2 .

Note that Λ−
a and Λ+

e are in the same connected component, same for
Λ−
c′ and Λ−

f ′′ .

3.5. The case sp(6,IR)

The main multiplets R6
m of sp(6, IR) contain 64(= 26) ERs/GVMs whose

signatures were given in [7] and we omit here for the lack of space. The
special reduced multiplets R6

s also contain 64 ERs/GVMs whose signatures
are given in the following pair-wise manner:

χ±
0 = { (m1,m2,m3,m4,m5)

± ; ±1
2(m15 + µ) } (26)

χ±
a = { (m1,m2,m3,m4,m5 + µ)± ; ±1

2m15 }
χ±
b = { (m1,m2,m3,m45,m5 + µ)± ; ±1

2m14 }
χ±
c = { (m1,m2,m34,m5,m45 + µ)± ; ±1

2m13 }
χ±
c′ = { (m1,m2,m3,m45 + µ,m5)

± ; ±1
2m14 }

χ±
d = { (m1,m23,m4,m5,m35 + µ)± ; ±1

2m12 }
χ±
d′ = { (m1,m2,m34,m5 + µ,m45)

± ; ±1
2m13 }

χ±
e = { (m12,m3,m4,m5,m25 + µ)± ; ±1

2m1 }
χ±
e′ = { (m1,m23,m4,m5 + µ,m35)

± ; ±1
2m12 }

χ±
e′′ = { (m1,m2,m35,m5 + µ,m4)

± ; ±1
2m13 }

χ±
f = { (m2,m3,m4,m5,m15 + µ)± ; ∓1

2m1 }
χ±
f ′ = { (m12,m3,m4,m5 + µ,m25)

± ; ±1
2m1 }

χ±
f ′′ = { (m1,m23,m45,m5 + µ,m34)

± ; ±1
2m12 }

χ±
f ′′′ = { (m1,m2,m35 + µ,m5,m4)

± ; ±1
2m13 }

χ±
g = { (m2,m3,m4,m5 + µ,m15)

± ; ∓1
2m1 }

χ±
g′ = { (m12,m3,m45,m5 + µ,m24)

± ; ±1
2m1 }

χ±
g′′ = { (m1,m23,m45 + µ,m5,m34)

± ; ±1
2m12 }

χ±
h = { (m2,m3,m45,m5 + µ,m14)

± ; ∓1
2m1 }

χ±
h′ = { (m12,m3,m45 + µ,m5,m24)

± ; ±1
2m1 }

χ±
h′′ = { (m2,m3,m45 + µ,m5,m14)

± ; ∓1
2m1 }

χ±
j = { (m2,m34,m5,m45 + µ,m13)

± ; ∓1
2m1 }

χ±
j′ = { (m12,m34,m5,m45 + µ,m23)

± ; ±1
2m1 }
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χ±
j′′ = { (m1,m24,m5,m45 + µ,m3)

± ; ±1
2m12 }

χ±
k = { (m2,m34,m5 + µ,m45,m13)

± ; ∓1
2m1 }

χ±
k′ = { (m12,m34,m5 + µ,m45,m23)

± ; ±1
2m1 }

χ±
k′′ = { (m1,m24,m5 + µ,m45,m3)

± ; ±1
2m12 }

χ±
ℓ = { (m2,m35,m5 + µ,m4,m13)

± ; ∓1
2m1 }

χ±
ℓ′ = { (m12,m35,m5 + µ,m4,m23)

± ; ±1
2m1 }

χ±
ℓ′′ = { (m1,m25,m5 + µ,m4,m3)

± ; ±1
2m12 }

χ±
m = { (m2,m35 + µ,m5,m4,m13)

± ; ∓1
2m1 }

χ±
m′ = { (m12,m35 + µ,m5,m4,m23)

± ; ±1
2m1 }

χ±
m′′ = { (m1,m25 + µ,m5,m4,m3)

± ; ±1
2m12 }

where µ ∈ 2IN − 1.

Taking into account the Knapp-Stein operators then each such multiplet
contains four connected components, or submultiplets:
• a doublet consisting of Λ±

0 ;
• a submultiplet of 12 ERs/GVMs starting with Λ−

a ;
• a submultiplet of 30 ERs/GVMs starting with Λ−

c′ ;

• a submultiplet of 20 ERs/GVMs starting with Λ−
f ′′′ .

There are six minimal UIRs with m1 = m2 = m3 = m4 = m5 = µ = 1 :
• The one in Λ−

0 has have trivial su(6) irrep and d = 1
2 .

• The one in Λ−
a has fundamental su(6) irrep and d = 1.

• The one in Λ−
c′ has 105-dimensional su(6) irrep and d = 3

2 .

• The one in Λ−
f ′′′ has 980-dimensional su(6) irrep and d = 2.

• The one in Λ−
m′′ has 1764-dimensional su(6) irrep and d = 5

2 .

• The one in Λ+
f has 252-dimensional su(6) irrep and d = 3.

Note that Λ−
a and Λ+

f are in the same connected component, same for

Λ−
c′ and Λ−

m′′ .

4. Summary, discussion of results and outlook

Each special reduced multiplet of sp(n, IR) contains [n2 ] + 1 connected
components, or submultiplets, although if we do not take into account the
Knapp-Stein operators then there would be n+1 connected components.

All the ERs/GVMs in a special reduced multiplet have the same Casimirs
for fixed parameters m1, ...,mn−1, µ, since such a multiplet can be obtained
from a main multiplet (of only one connected component) depending on the
parameters m1, ...,mn−1,mn, by replacing the even number 2mn with the
odd number µ.

There are n minimal UIRs for sp(n, IR) with conformal weights d = 1
2 , 1,

..., n2 whose corresponding ERs are denoted in the corresponding figures as

χ−
0 , χ

−
a , . . .. Note that in each case the Knapp-Stein operator acting from
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the ER containing a minimal UIR degenerates to a differential operator
of degree n, n − 1, . . . , 1, (respectively to the above enumeration). Note
further, that there is no differential operator with image that is an ER
containing a minimal UIR - that can be used as an equivalent definition of a
minimal UIR. The only operator that acts to such an ER is the conjugate
non-degenerate Knapp-Stein integral operator.

Note that only the two singletons with d = 1
2 , 1 are isolated points below

the continuous unitary spectrum.

We should also note that the multiplets and intertwining differential op-
erators for Sp(2r, IR) are valid for Sp(r, r), though the representation
content is different [22].

In the present paper we continued the programme outlined in [2] on the ex-
ample of the non-compact group Sp(n, IR) (started already in [7]). Similar
explicit descriptions are planned for other non-compact groups from which
we have considered so far the cases of E7(−25) [3],

1 E6(−14) [24], SU(n, n)
[25], SO(p, q) [26] as parabolically related to SO(n, 2) [22]. We plan also
to extend these considerations to the supersymmetric cases and also to the
quantum group setting following as here the procedure of [11] and its gener-
alizations, cf., e.g., [27]. Such considerations are expected to be very useful
for applications to string theory and integrable models, cf., e.g., [28].
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Fig. 9. Special reduced multiplets R6
s for Sp(6, IR)


