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Abstract

Equations of motion in the nonlocal modifications of gravity are usually nonlinear
differential equations of an infinite order. A solution of such equations is mainly
hard to obtain and general solutions are almost unknown. Thus, we are limited
to some particular solutions. In this paper we present some ansätze that can help
find some solutions in the certain suitable forms.

1. Introduction

Attempts to modify General Relativity started already a few years after its
beginning and they were mainly motivated by purely mathematical reasons.
The discovery of the accelerated expansion of the Universe in 1998 inspired
a lot of new research in the field. In this paper, we consider nonlocal
modification (for a review see [1, 2]) of gravity with no matter defined by
action

S =

∫ (
R− 2Λ

16πG
+ CH(R)F(2)G(R)

)√
−g d4x, (1)

where 2 = ∇µ∇µ is the D’Alembert operator related to metric tensor gµν ,
F is an analytic function of 2 operator and G and H are differentiable
functions of the scalar curvature. Varying the action over metric tensor gµν
one can obtain equations of motion (see [7] for details).

C
(
− 1

2
gµνH(R)F(2)G(R) + (RµνΦ− (∇µ∇ν − gµν2)Φ)

+
1

2

∞∑
n=1

fn

n−1∑
l=0

(
gµνg

αβ∂α2
lH(R)∂β2

n−1−lG(R) (2)

− 2∂µ2
lH(R)∂ν2

n−1−lG(R) + gµν2
lH(R)2n−lG(R)

))
= −Gµν + Λgµν

16πG
,
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where Φ is given by

Φ = H′(R)F(2)G(R) + G′(R)F(2)H(R) (3)

and ′ denotes derivatives over R.

These equations can be of arbitrary high order and some ansätze are fre-
quently used to solve them.

We will discuss 4 ansätze:

• 2R = rR+ s

• 2R = qR2

• 2R = qR3

• 2nR = cnR
An+B for all n ≥ 1, A and B are some constants.

These ansätze can considerably simplify solving equations of motion, but
still we have to find some solutions satisfying them before their application
to the equations of motion. That task can also be a challenging one even in
the simplest case. Linear ansatz, for example, is a fourth order nonlinear
differential equation of cosmological scale factor a(t). Thus, in the sequel
we will be looking for the solution of the particular ansatz in the suitably
chosen form.

We assume that Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

ds2 = −dt2+a2(t)
(

dr2

1−kr2
+ r2dθ2+ r2 sin2 θdϕ2

)
is used. All three possibil-

ities for curvature parameter k (0,±1) are investigated. Scalar curvature
in this context is given by

R = 6
( ä
a
+

( ȧ
a

)2
+

k

a2

)
. (4)

These ansätze and their solutions have been used in several papers to get
various cosmological solutions [2, 3, 4, 5].

2. Linear ansatz: 2R = rR + s

To begin with, we search for the solution of the ansatz

2R = rR+ s, (5)

for some real constants r and s in the form

a(t) = a0(σe
λt + τe−λt). (6)

Direct calculation gives the corresponding expressions for the Hubble pa-
rameter and scalar curvature

H(t) =
λ(σeλt − τe−λt)

σeλt + τe−λt
,

R(t) =
6
(
2a20λ

2
(
σ2e4tλ + τ2

)
+ ke2tλ

)
a20 (σe

2tλ + τ)
2 ,

(7)
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Moreover, we can calculate 2R and plug it into ansatz (5) and get

−12λ2e2tλ
(
4a20λ

2στ − k
)
= 6r

(
2a20λ

2
(
σ2e4tλ + τ2

)
+ ke2tλ

)
+ sa20

(
σe2tλ + τ

)2
.

(8)

Last equation can be interpreted as a polynomial in e2λt. Thus, it can be
split into the following system of linear equations in r and s

a20τ
2
(
12rλ2 + s

)
= 0,

2
(
a20sστ + 24a20λ

4στ + 3kr − 6kλ2
)
= 0,

a20σ
2
(
12rλ2 + s

)
= 0.

(9)

It has two solutions

r = 2λ2, s = −24λ4, (10)

and

s = −12rλ2, k = 4a20λ
2στ. (11)

Therefore, the solution of the form (6) is a solution of the ansatz (5) for any
value of real parameters τ , σ, a0 and λ if we set r = 2λ2 and s = −24λ4.
Note that in all these cases r > 0 and s < 0. Alternatively, assuming
k = 4a20λ

2στ solution (6) satisfies the ansatz (5) for any r and s = −12rλ2.
Note that in this case we have constant scalar curvature R = 12λ2.

Secondly, we can look for a solution in the form

a(t) = a0e
λ
2
t2 ,

H(t) = λt,

R(t) = 6a−2
0 e−t2λ

(
2a20t

2λ2et
2λ + a20λe

t2λ + k
)
.

(12)

Using the same method as in the previous case the ansatz (5) gives

12a20rt
2λ2et

2λ + 6a20rλe
t2λ + a20se

t2λ + 72a20t
2λ3et

2λ

+ 24a20λ
2et

2λ + 6kr − 12kt2λ2 − 12kλ = 0.
(13)

Hence, we interpret this as a two variable polynomial in t2 and eλt
2
to split

it into system of equations corresponding to each coefficient

6k(r − 2λ) = 0,

a20
(
6rλ+ s+ 24λ2

)
= 0,

−12kλ2 = 0,

12a20λ
2(r + 6λ) = 0.

(14)
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To get a nonconstant solution of a(t) in (12) the third equation in the
system (14) requires k = 0. With this additional assumption we can solve
(14) and get

r = −6λ, s = 12λ2. (15)

Now, in (12) we have solutions for all values of λ and a0. In the contrast
to the first case we have s > 0.

To summarize, we obtained two families of solutions:

1. a(t) = a0(σe
λt + τe−λt) satisfying ansatz 2R = 2λ2R− 24λ4 and

2. a(t) = a0e
λ
2
t2 satisfying ansatz 2R = −6λR+ 12λ2.

Using this method one can also get solutions in the form a(t) = a0
√

|t|e
λ
2
t2

and a(t) = a0
√
σeλt + τe−λt. These solutions are obtained only in the flat

metric case (k = 0) [8].

3. Quadratic ansatz: 2R = qR2

We look for the solutions in the form

a(t) = a0|t− d1|α. (16)

The first consequences are

H(t) = α(t− d1)
−1,

R(t) = 6(α(2α− 1)(t− d1)
−2 +

k

a20
(t− d1)

−2α),

2R = 12α(α− 1)
(
3(2α− 1)(t− d1)

−4 +
k

a20
(t− d1)

−2α−2
)
.

(17)

Thus, the ansatz becomes

α(α− 1)
(
3(2α− 1)(t− d1)

−4 +
k

a20
(t− d1)

−2α−2
)

= 3q
(
α(2α− 1)(t− d1)

−2 +
k

a20
(t− d1)

−2α
)2

.

(18)

We have to solve equation (18) for arbitrary t and therefore we will split it
into 2 cases. At first, let us analyze the problem for k = 0. The equation
(18) becomes

α(α− 1)(2α− 1)(t− d1)
−4 = qα2(2α− 1)2(t− d1)

−4. (19)

There are 2 obvious solutions of the last equation, namely α = 0 and α = 1
2 ,

for any value of parameter q. Note that these two solutions fulfill condition
R = 0.
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When α ̸= 0 and α ̸= 1
2 then R ̸= 0 and equation (19) becomes

α− 1 = qα(2α− 1), (20)

and can be solved for any α with suitably chosen value of q. Thus, for

qα =
α− 1

α(2α− 1)
, (21)

we have the following solution of the ansatz 2R = qαR
2

a(t) = a0|t− d1|α, α ̸= 0, α ̸= 1

2
. (22)

The second possibility is that k is nonzero and equation (18) can be rewrit-
ten as (τ = t− d1)

α(α− 1)
(
3(2α− 1)τ−4 +

k

a20
τ−2α−2

)
= 3q

(
α2(2α− 1)2τ−4 + 2α(2α− 1)

k

a20
τ−2α−2 +

k2

a40
τ−4α

)
. (23)

The coefficient in front of (t − d1)
−4α is P = 3qk2

a40
. If P ̸= 0, since we are

looking for solutions independent of time, we have to require −4α = −4 or
−4α = −2α− 2. Both of these alternatives lead to α = 1 and the equation
(23) is simplified to

0 = 3q
(
1 +

k

a20

)2
(t− d1)

−4. (24)

Since q = 0 would imply P = 0 we have only one solution for k = −1 and
q ̸= 0

a(t) = |t− d1|. (25)

This solution also satisfies R = 0. Last possibility is P = 0, or in other
words q = 0. In this case ansatz becomes 2R = 0 and equation (18) is
transformed to

α(α− 1)
(
3(2α− 1)(t− d1)

−4 +
k

a20
(t− d1)

−2α−2
)
= 0. (26)

It has two solutions α = 1 and α = 0 or in terms of a scale factor a(t) =
a0|t− d1| and a(t) = a0.

Quadratic ansatz gives the solution (16) in six cases:

1. k = 0, α = 0, q ∈ R,
2. k = 0, α = 1

2 , q ∈ R,
3. k = 0, α ̸= 0 and α ̸= 1

2 , qα = α−1
α(2α−1) ,

4. k = −1, α = 1, q ̸= 0, a0 = 1,
5. k ̸= 0, α = 0, q = 0,
6. k ̸= 0, α = 1, q = 0.
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4. Cubic ansatz: 2R = qR3

We again look for a solution of the form (16). Using (16) and (17) the
ansatz is transformed to

α(α− 1)
(
3(2α− 1)(t− d1)

−4 +
k

a20
(t− d1)

−2α−2
)

= 18q
(
α(2α− 1)(t− d1)

−2 +
k

a20
(t− d1)

−2α
)3

.

(27)

In a flat model (k = 0) the equation is simplified considerably and reads

α(α− 1)(2α− 1)(t− d1)
−4 = 6qα3(2α− 1)3(t− d1)

−6. (28)

Since it has to be satisfied for all t, both sides of the equation have to be
zero. We have 3 cases

1. α = 0,

2. α = 1
2 ,

3. α = 1 and q = 0.

If k = ±1 the equation (27) reads

α(1− α)(2α− 1)(t− d1)
−4 + 6qα3(2α− 1)3(t− d1)

−6 +
6kq

a60
(t− d1)

−6α

+
18q

a40
α(2α− 1)(t− d1)

−2−4α +
k

3a20
α(1− α)(t− d1)

−2−2α (29)

+
18qk

a20
α2(2α− 1)2(t− d1)

−4−2α = 0.

In the equation (29) there are at most six different powers of t− d1. They
are all different, and therefore no two of them can be combined unless
α ∈ {0, 12 ,

2
3 , 1, 2}. Hence, when α /∈ {0, 12 ,

2
3 , 1, 2} we have to satisfy the

following system
α(1− α)(2α− 1) = 0,

6qα3(2α− 1)3 = 0,

6kq

a60
= 0,

18q

a40
α(2α− 1) = 0,

k

3a20
α(1− α) = 0,

18qk

a20
α2(2α− 1)2 = 0.

(30)



Some ansätze in nonlocal modified gravity 137

The first equation requires that α ∈ {0, 12 , 1}, but all these values are ex-
cluded so the system has no solutions. It remains to check if there is a
solution of (29) in the set {0, 12 ,

2
3 , 1, 2}. For α = 0 it reads 6qk

a60
= 0 and is

satisfied if q = 0. For α = 1
2 we obtain

− k

4a20
(t− d1)

−3 =
18qk

a60
(t− d1)

−3. (31)

In other words we have q = −a40
72 . When α = 2

3 we have

(t− d1)
−4 +

k

a20
(t− d1)

− 10
3 = −81q

(2
9
(t− d1)

−2 +
k

a20
(t− d1)

− 4
3

)3
. (32)

This equation has no solution that would hold for all values of t. For α = 1
we obtain

18q
(
1 +

k

a20

)3
(t− d1)

−6 = 0. (33)

In this case we have two solutions. The first is q = 0 for both values of
k = ±1, and the second k = −1 and a0 = 1.

The last case α = 2 yields the following equation

9(t− d1)
−4 +

k

a20
(t− d1)

−6 = 9q
(
6(t− d1)

−2 +
k

a20
(t− d1)

−4
)3

. (34)

This equation does not have any solution.

Cubic ansatz gives the solution (16) in seven cases:

1. k = 0, α = 0, q ∈ R,
2. k = 0, α = 1

2 , q ∈ R,
3. k = 0, α = 1, q = 0,

4. k ̸= 0, α = 0, q = 0,

5. k ̸= 0, α = 1
2 , q = −a40

72 ,

6. k ̸= 0, α = 1, q = 0,

7. k = −1, α = 1, q ̸= 0, a0 = 1.

5. Ansatz 2nR = cnR
An+B

We consider another ansatz of the form 2nR = cnR
An+B, where A and B

are real constants, and n ∈ N. Since we have an infinite number of condi-
tions on the scalar curvature we have first to be sure that two consecutive
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conditions are consistent. Calculation of 2n+1R in two ways, using the
formula 2Rp = pRp−12R− p(p− 1)Rp−2Ṙ2 yields

2n+1R = 2cnR
An+B

= cn((An+B)RAn+B−12R− (An+B)(An+B − 1)RAn+B−2Ṙ2)

= cn(An+B)(c1R
An+A+2B−1 − (An+B − 1)RAn+B−2Ṙ2)

= cn+1R
An+A+B.

(35)

An+A+ 2B − 1 = An+A+B, (36)

Ṙ2 = RA+B+1, (37)

cn+1 = cn(An+B)(c1 −An−B + 1). (38)

Equation (36) implies that B = 1. Sequence cn is defined by (38) which
can be solved to obtain

cn = c1

n−1∏
k=1

(Ak + 1)(c1 −Ak), (39)

where c1 is the first element of the sequence and will be determined later.
General solution of equation (37) is of the form

R(t) =
( 2

At− d1

) 2
A
, (40)

with an arbitrary constant d1. In order to have a solution of the form given
in the last equation we have to check the initial condition 2R = c1R

A+1.
Using the solution (40) we can get expression for the Hubble parameter
and scale factor

H(t) =
2c1 + 2 +A

3(At− d1)
,

a(t) = a0|At− d1|
2c1+2+A

3A , a0 > 0.

(41)

On the other hand scale factor must fulfill (40), ie.

R = 6

(
ä

a
+

ȧ2

a2
+

k

a2

)
=

( 2

At− d1

) 2
A
. (42)

Equation (42) becomes

a20
(4c1 + 4 + 2A)(4c1 + 4−A)

9
(At− d1)

4(c1−A+1)
3A + 2k

=
1

3
4

1
Aa20(At− d1)

4c1+2A−2
3A .

(43)
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If we require that all three terms in the above equation have the same
degree in At− d1 it gives the following conditions

4(c1 −A+ 1)

3A
=

4c1 + 2A− 2

3A
= 0,

a20
(4c1 + 4 + 2A)(4c1 + 4−A)

9
+ 2k =

1

3
4

1
Aa20.

(44)

We see that A = 1, c1 = 0 and a0 is determined by a20 = −3k. In the
case k = 1 obviously there is no solution, in the flat case k = 0 we have
only the solution a0 = 0 and hence a(t) = 0. The case k = −1 is the most
interesting and it yields solution

k = −1, a(t) =
√
3|t− d1|. (45)

Another possibility is 4(c1−A+1)
3A = 4c1+2A−2

3A ̸= 0. Therefore we have A = 1,
c1 ̸= 0 and the remaining condition is

a20
(4c1 + 6)(4c1 + 3)

9
(t− d1)

4c1
3 + 2k =

4

3
a20(t− d1)

4c1
3 . (46)

It holds when k = 0 and 8c21 + 18c1 + 3 = 0. The corresponding solutions
are

k = 0, a(t) = a0|t− d1|
2c1+3

3 , c1 =
−9±

√
57

8
. (47)

Now suppose 4c1+2A−2
3A = 0 ̸= 4(c1−A+1)

3A . Hence equation (43) is trans-
formed into

c1 =
1−A

2
,

−1

3
4

1
Aa20 + 2k = 0,

2a20(2−A) = 0.

(48)

Obviously, we have A = 2 and c1 = −1
2 , hence in the same way as previous

case we obtain nontrivial solution only for k = 1 and a0 =
√
3:

k = 1, a(t) =
√
3
√

|2t− d1| c1 = −1

2
. (49)

The remaining cases 4(c1−A+1)
3A = 0, 4c1+2A−2

3A ̸= 0 and 4(c1−A+1)
3A ̸= 0,

4c1+2A−2
3A ̸= 0 lead to a0 = 0 and hence trivial solution a(t) = 0.

We obtained three solutions:

1. A = 1, c1 = 0, k = −1, a(t) =
√
3|t− d1|,

2. A = 1, c1 =
−9±

√
57

8 , k = 0, a(t) = a0|t− d1|
2c1+3

3 ,

3. A = 2, c1 = −1
2 , k = 1, a(t) =

√
3|2t− d1| .
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6. Conclusion

In this paper we investigated some ansätze for the class of nonlocal gravity
models given by the action in the form (1). Since the equations of motion
that are obtained in this setting can be very difficult to solve we explored
some ansätze that are useful to simplify the problem. Also, we obtained
few families of solutions for these ansätze. The remaining task is to verify
if these solutions also satisfy equations of motion (2). This question is
partially addressed in the several papers [3, 4, 5, 6].
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