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Abstract

We give a prescription for performing the T-dualization for the theories with the co-
ordinate dependent backgrounds. We consider the simplest case of the coordinate
dependent background, the weakly curved background, which consists of constant
metric and Kalb-Ramond field with infinitesimally small coordinate dependent
part. T-dual theory is defined in the non-geometric double space, described by
the Lagrange multiplier yµ and its T -dual ỹµ. We also demonstrate that the pre-
scription is applicable in the opposite direction as well. This is nontrivial because
the T-dual string does not propagate in the weakly curved background.

1. Introduction

T-duality is long investigated property of string theories. It was for the
first time described in the context of toroidal compactification in [1]. The
majority of papers addressing T-duality considers the string moving in the
constant background. In these papers, the prescriptions for the construction
of the T-dual theories were established.

In Buscher’s construction of T-dual theory [2, 3], one starts with the mani-
fold containing metric Gµν , antisymmetric field Bµν and dilaton field Φ. It
is required that the metric admits at least one continuous abelian isometry
which leaves the action for the σ-model invariant. The covariant Buscher’s
construction consists of the following steps. First, the isometry is gauged
by introducing the gauge fields vµα. Second, the physical equivalence is pre-
served by introducing the Lagrange multiplier term, which constrains the
gauge field strength

Fµ
αβ = ∂αv

µ
β − ∂βv

µ
α (1)
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to zero, making the gauge fields nonphysical. The integration over the
Lagrange multipliers yµ, in the gauged fixed Lagrangian simply recovers
the original theory. The integration over the gauge fields vµα, produces the
T -dual theory.

In the present article, we consider the weakly curved background and allow
the background fields to depend on the coordinates along which we perform
duality transformations. The variation with respect to the argument of the
background field Bµν , produces the topological term, and consequently the
isometry is still the symmetry. Our procedure for obtaining the T-dual
action is the following:

1. Replace the ordinary derivatives ∂αx
µ with the covariant ones Dαx

µ =
∂αx

µ + vµα, where vµα are the gauge fields.
2. Replace the argument of the background fields with the invariant one,

substituting every coordinate with its invariant generalization defined
by

∆xµinv =

∫
dξαDαx

µ = xµ − xµ(ξ0) + ∆V µ[v+, v−], (2)

where ∆V µ is a line integral of the gauge fields vµα.
3. Add Lagrange multiplier term yµF

µ
01 and fix the gauge taking xµ(ξ) =

xµ(ξ0).
4. On the equations of motion for the Lagrange multiplier yµ the original

theory will be obtained.
5. The T-dual theory ⋆S[y] is obtained by integrating with respect to

gauge fields vµα.

Note that the line integral and consequently the invariant coordinate ∆xµinv
and ∆V µ are path dependent. The Lagrange multiplier term yµF

µ
01 grantees

that the gauge field is closed (dv = 0) but one should consider the topolog-
ical contribution as well.

We apply our procedure once again, starting from the T-dual action. The
T-dual theory is defined in doubled space but is still globally invariant
under the shift of the T-dual coordinate yµ. Gauging this symmetry, we
show that T-dual of the T-dual is indeed the original theory.

2. Bosonic string in the weakly curved background

Let us consider the action [4]

S[x] = κ

∫
Σ
d2ξ ∂+x

µΠ+µν [x]∂−x
ν , (3)

describing the propagation of the bosonic string in the non-trivial back-
ground, defined by the space-time metric Gµν and the Kalb-Ramond field
Bµν

Π±µν [x] = Bµν [x]±
1

2
Gµν [x]. (4)
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The integration goes over two-dimensional world-sheet Σ parameterized by
ξ± = 1

2(τ ± σ). The action is given in the conformal gauge gαβ = e2F ηαβ ,
where gαβ is the intrinsic world-sheet metric. Here xµ(ξ), µ = 0, 1, ..., D−1

are the coordinates of the D-dimensional space-time, κ = 1
2πα′ , and ∂± =

∂τ ± ∂σ.

The consistency of the theory requires that the background fields satisfy
space-time equations of motion

Rµν −
1

4
BµρσB

ρσ
ν = 0 , DρB

ρ
µν = 0, (5)

where Bµνρ = ∂µBνρ+ ∂νBρµ+ ∂ρBµν is the field strength of the field Bµν ,
and Rµν and Dµ are Ricci tensor and covariant derivative with respect to
space-time metric. We consider the weakly curved background, defined by
the following expressions

Gµν = const, Bµν [x] = bµν +
1

3
Bµνρx

ρ = bµν + hµν . (6)

which satisfies the space-time equations of motion (5), if the constant Bµνρ
is taken to be infinitesimally small and all the calculations are done in the
first order in Bµνρ.

3. Generalized Bouscher’s construction

The standard Bouscher’s construction of T-dual theory, is applied to the
target space with isometries. Despite of xµ-dependence of the background
fields, the weakly curved background preserves the global shift symmetry

δxµ = λµ = const, (7)

for the closed string. For simplicity we assume that all the coordinates are
compact.

As Bµν is linear in coordinate, the variation of the action is proportional
to the total divergence

δS =
κ

3
Bµνρλ

ρϵαβ
∫

d2ξ∂α(x
µ∂βx

ν) = 0, (8)

which vanishes in the case of the closed string and the topologically trivial
mapping of the world-sheet into the space-time.

3.1. Gauging shift symmetry

In comparison to the standard Boucher construction, the procedure is
changed, because of the coordinate dependence of the fields. As usual, to
localize the global shift symmetry, we introduce the gauge fields vµα which
transform as

δvµα = −∂αλ
µ, (λµ = λµ(τ, σ)), (9)
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and substitute the ordinary derivatives with the covariant ones

∂αx
µ → Dαx

µ = ∂αx
µ + vµα. (10)

In the weakly curved background, this replacement is, however, not suffi-
cient to make the action locally invariant. Because of this, we additionally
replace the coordinate xµ, with the invariant coordinate defined by

∆xµinv ≡
∫
P
dξαDαx

µ = xµ − xµ(ξ0) + ∆V µ, (11)

where

∆V µ ≡
∫
P
dξαvµα. (12)

The path P is taken from ξα0 (τ0, σ0) to ξα(τ, σ). The path dependence will
be discussed in 3.2. for the world-sheets with trivial holonomies and in 6.
for world-sheets with the nontrivial ones.

The main requirement is that the dual theory is equivalent to the initial
one. So, in order to make the degrees of freedom originating from the gauge
fields nonphysical, the corresponding field strength

Fµ
αβ ≡ ∂αv

µ
β − ∂βv

µ
α, (13)

must vanish. We can achieve this by introducing the Lagrange multiplier
yµ, and the appropriate term in the Lagrangian

Sinv = κ

∫
d2ξ

[
D+x

µΠ+µν [∆xinv]D−x
ν +

1

2
(vµ+∂−yµ − vµ−∂+yµ)

]
, (14)

where the last term is equal 1
2yµF

µ
+− up to the total divergence. Fixing the

gauge xµ(ξ) = xµ(ξ0) we obtain

Sfix[y, v±] = κ

∫
d2ξ

[
vµ+Π+µν [∆V ]vν− +

1

2
(vµ+∂−yµ − vµ−∂+yµ)

]
, (15)

where yµ and vµ± are independent variables and ∆V µ is defined in (12).

3.2. Integrating out the Lagrange multiplier

Let us show that the gauge fixed action (15) is equivalent to the initial one
(3). The equation of motion with respect to the Lagrange multiplier yµ,
enforces the field strength of the gauge fields to vanish

∂+v
µ
− − ∂−v

µ
+ = 0. (16)

Its solution
vµ± = ∂±x

µ, (17)
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substituted into (12) gives

∆V µ(ξ) = xµ(ξ)− xµ(ξ0). (18)

Let us stress that the value of the ∆V µ does not depend on the choice of
the path P . Using Stoke’s theorem the defining integral along the closed
path P , can be rewritten as the integral over the surface S which spans the
path P = ∂S, ∮

P=∂S
dξαvµα =

∫
S
d2ξ (∂+v

µ
− − ∂−v

µ
+). (19)

The equation of motion with respect to yµ forces this field strength to
vanish.

Omitting xµ(ξ0), because the action does not depend on the constant shift
of the coordinate we find

Sfix[v± = ∂±x] = κ

∫
d2ξ ∂+x

µΠ+µν [x]∂−x
ν , (20)

which is just the initial action (3).

4. T-dual action in the weakly curved background

The T-dual action can be obtained by eliminating the auxiliary gauge fields
from (15). Because V µ is function of independent variables vµ+ and vµ−, the
variation by vµ± gives two equations of motion

Π∓µν [∆V ]vν± +
1

2
∂±yµ = ∓β∓

µ [V ], (21)

which can be rewritten as

vµ±(y) = −κΘµν
± [∆V (y)]

[
∂±yν ± 2β∓

ν [V (y)]
]
, (22)

where

Θµν
± [∆V ] = −2

κ
(G−1

E Π±G
−1)µν = θµν [∆V ]∓ 1

κ
(G−1

E )µν [∆V ], (23)

and GE
µν ≡ [G − 4BG−1B]µν , θ

µν ≡ − 2
κ(G

−1
E BG−1)µν are the open string

background fields: the effective metric and the non-commutativity param-
eter respectively. The terms

βα
µ [V ] ≡ ∂µBνρϵ

αβV ν∂βV
ρ, (24)



124 Ljubica Davidović, Branislav Sazdović

come from the variation with respect to ∆V µ(ξ), but depend just on V µ.
After one partial integration, we have

δV Sfix = −κ

∫
d2ξ βα

µ [V ] ∂αδV
µ = −κ

∫
d2ξβα

µ [V ]δvµα. (25)

Substituting (22) into the action (15), we obtain T-dual action

⋆S[y] ≡ Sfix[y] =
κ2

2

∫
d2ξ ∂+yµΘ

µν
− [∆V (y)]∂−yν , (26)

where we neglected the second order term β−
µ β

+
ν .

Note that (22) is not the solution of (21), because V µ and β±
µ depend on

vµ±. In the general case, the solution for vµ± and ∆V µ can not be trivially
found. In the next subsections they will be found in the order needed for
the case of the weakly curved background. Finally, to obtain the explicit
T-dual action we should substitute the solution for ∆V µ expressed in terms
of yµ into (26) .

4.1. The case of the flat background (zeroth order iteration)

In the case of the constant background Bµνρ = 0, one has

Gµν [x] → Gµν , Bµν [x] → bµν , (27)

and all the background fields will be denoted by index 0. As Π0+µν is
constant, β±

µ vanishes and (22) has the solution

v
(0)µ
± = −κΘµν

0±∂±yν , (28)

and the T0-dual action is

S[y] =
κ2

2

∫
d2ξ ∂+yµΘ

µν
0−∂−yν . (29)

Using (12) and (28) we obtain ∆V (0)µ = V (0)µ(ξ)− V (0)µ(ξ0) with

V (0)µ(ξ) = −κθµν0 yν + (g−1)µν ỹν = (g−1)µν [(2bG−1) ρ
ν yρ + ỹν ], (30)

where

∆yµ(ξ) ≡
∫
P
(dτ ẏµ + dσy′µ) = yµ(ξ)− yµ(ξ0). (31)

and

∆ỹµ(ξ) ≡
∫
P
(dτy′µ + dσẏµ) = ỹµ(ξ)− ỹµ(ξ0). (32)
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4.2. The case of the weakly curved background

Note that the variable V µ, appears always in the terms containing the
infinitesimal Bµνρ. So, as we are working up to the first order in Bµνρ, the

zeroth order value V (0)µ, will be substituted in all the expressions and in
the rest of the paper the index (0) will be omitted. Finding the expression
for V µ, we in fact solved the eq. (22). The solution is

vµ± = −κΘµν
± [∆V ]

[
∂±yν ±2β∓

ν [V ]
]
, V µ(ξ) = −κθµν0 yν +(g−1)µν ỹν , (33)

and the T-dual action (26) takes the form

⋆S[y] =
κ2

2

∫
d2ξ ∂+yµΘ

µν
− [∆V ]∂−yν . (34)

Comparing the initial action (3) with the T-dual one (34), we see that they
are equal under following transformations

∂±x
µ → ∂±yµ, Π+µν [x] →

κ

2
Θµν

− [∆V ], (35)

which implies

Gµν → ⋆Gµν [y, ỹ] = (G−1
E )µν [∆V ],

Bµν [x] → ⋆Bµν [y, ỹ] =
κ

2
θµν [∆V ],

∆V µ = −κθµν0 ∆yν + (g−1)µν∆ỹν . (36)

Comparing the solutions (33) and (17), we obtain the T-dual transforma-
tion of the variables law

∂±x
µ ∼= −κΘµν

± [∆V ]
[
∂±yν ± 2β∓

ν [V ]
]
. (37)

Let us underline that in the initial theory the metric tensor is constant and
the Kalb-Ramond field is linear in coordinate xµ. In the T-dual theory,
both background fields depend on ∆V µ, which is the linear combination
of yµ and its dual ỹµ and consequently T-dual action is not defined on
the geometrical space (defined by the coordinate yµ) but on the so called
doubled target space [8] composed of both yµ and ỹµ.

5. From T-dual to the original theory

The T-dual theory (34) is by construction physically equivalent to the initial
one (3). So, we should expect that the T-dual of the T-dual theory is just
the initial theory. But, in T-dual theory both T-dual metric tensor ⋆Gµν
and Kalb-Ramond field ⋆Bµν are coordinate dependent. Moreover, they
depend on both yµ and ỹµ.
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To demonstrate the physical equivalence, we should first find the global
symmetry of the T-dual action. Note that the action is not invariant under
the constant shift of the argument of Θµν

− . But, the transformation

δyµ = λµ = const, (38)

leaves the argument itself, ∆V µ = V µ(ξ) − V µ(ξ0), unchanged and conse-
quently the action (34) is invariant too.

5.1. Gauging the symmetry

Let us localize this symmetry and find the corresponding locally invariant
action. The procedure is the same as in subsec. 3.1., the only difference is
that here we deal with the double space defined by two coordinates yµ and
ỹµ.

We covariantize the derivatives

D±yµ = ∂±yµ + u±µ, (39)

introducing the gauge fields u±µ which transform as

δu±µ = −∂±λµ(τ, σ). (40)

The dual background fields argument ∆V µ is not locally invariant. So, first
we construct the invariant expressions for both variables yµ and ỹµ

∆yinvµ ≡ =

∫
P
(dτD0yµ + dσD1yν) = ∆yµ +∆Uµ,

∆ỹinvµ ≡
∫
P
(dτD1yµ + dσD0yν) = ∆ỹµ +∆Ũµ, (41)

where ∆yµ and ∆ỹµ are defined in (31) and (32) and

∆Uµ ≡
∫
P
(dτu0µ + dσu1µ), ∆Ũµ ≡

∫
P
(dτu1µ + dσu0µ). (42)

Now, it is easy to find the generalization of the background fields argument

∆V µ
inv ≡ −κθµν0 ∆yinvν + (g−1)µν∆ỹinvν

= −κθµν0 (∆yρ +∆Uρ) + (g−1)µν(∆ỹν +∆Ũν)

= ∆V µ[y] + ∆V µ[U ], (43)

which is invariant by construction.

Finally, we can construct the dual invariant action

⋆Sinv =
κ

2

∫
d2ξ

[
κD+yµΘ

µν
− [∆Vinv]D−yν + u+µ∂−z

µ − u−µ∂+z
µ
]
, (44)
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where the second term makes the gauge fields u±µ nonphysical. The gauge
fixing yµ(ξ) = yµ(ξ0), produces D±yµ = u±µ and ∆V µ[y] = 0, so the action
becomes

⋆Sfix[z, u±] =
κ

2

∫
d2ξ

[
κu+µΘ

µν
−
[
∆V [U ]

]
u−ν + u+µ∂−z

µ − u−µ∂+z
µ
]
.

(45)

5.2. Integrating out the Lagrange multiplier

The equation of motion with respect to the Lagrange multiplier zµ

∂+u−µ − ∂−u+µ = 0, (46)

has the solution
u±µ = ∂±yµ, (47)

which substituted to (42) gives ∆Uµ = ∆yµ. So, the action (45) on this
solution becomes

⋆Sfix[u± = ∂±y] =
κ2

2

∫
d2ξ∂+yµΘ

µν
−
[
∆V [y]

]
∂−yν , (48)

and coincides with the T-dual action (34).

5.3. Integrating out the gauge fields

By varying the action (45), with respect to the gauge fields u±µ, using the
fact that

Θνρ
− = Θνρ

0− − 2κ[Θ0−hΘ0−]
νρ, (49)

we obtain the equations of motion

∂±z
µ = −κΘµν

±
[
∆V [U ]

][
u±ν ± 2β∓

ν

[
V [U ]

]]
. (50)

Using the expression Θµν
± Π∓νρ = 1

2κδ
µ
ρ , we can extract u±µ

u±µ = −2Π∓µν

[
∆V [U ]

]
∂±z

ν ∓ 2β∓
µ

[
V [U ]

]
. (51)

Similarly as in the subsection 4.2., we will solve equations (51) and (42)
iteratively. From the zeroth order solution of (51) one finds the zeroth order

values of Uµ and Ũµ

Uµ = −2bµνz
ν +Gµν z̃

ν , Ũµ = −2bµν z̃
ν +Gµνz

ν , (52)

and confirms that

V µ[U ] = (g−1)µν [2b ρ
ν Uρ + Ũν ] = zµ, (53)
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and consequently β±
µ [V [U ]] = β±

µ [z]. Substituting (53) into (51), we obtain
its solution

u±µ = −2Π∓µν [∆z]∂±z
ν ∓ 2β∓

µ [z],
(
∆zµ = zµ(ξ)− zµ(ξ0)

)
. (54)

Substituting it into the action (45), we obtain

⋆Sfix[z] = κ

∫
d2ξ∂+z

µΠ+µν [z(ξ)− z(ξ0)]∂−z
ν . (55)

But, this action is invariant under the global shift in the coordinate and we
can omit the term z(ξ0) and obtain the T-dual of the T-dual action

⋆⋆S[z] ≡ ⋆Sfix[z] = κ

∫
d2ξ∂+z

µΠ+µν [z]∂−z
ν , (56)

which is in fact the initial action. So, the second T-duality turns the dou-
bled target space (yµ, ỹµ) back to the conventional space zµ.

Comparing (54) with (47), we obtain the T-duality transformation of the
variables law

∂±yµ ∼= −2Π∓µν [∆z]∂±z
ν ∓ 2β∓

µ [z]. (57)

Note that this is the inverse transformation of (37). More precisely, substi-
tuting yµ from (57) into (37) one has ∂±x

µ = ∂±z
µ.

6. Global features in the quantum theory

Let us shortly discuss some global features of our procedure. In the classical
theory, the invariant coordinate ∆xinv is multivalued, and in the quantum
theory the holonomies of the world-sheet gauge fields introduce the new
obstructions.

For simplicity we will consider the case when the world-sheet is a torus.
After the Wick rotation τ → −iτ , the term in the action which contains
metric tensor Gµν acquires multiplier i, while the terms which contain
Kalb-Ramond field Bµν and Lagrange multiplier yµ remain unchanged. We
simplified notation using differential forms and omitting the space-time
index µ. The Hodge duality operator is denoted by star. The Euclidean
path integral partition function is therefore

Z =

∫
DyDv e−S(v,∆V )+iκ

∫
Σ vdy, (58)

where

S(v, V ) =
κ

2

∫
Σ
v G ⋆v − iκ

∫
Σ
vB[∆V ]v. (59)

We will compare this partition function with one of the original theory.
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Let us make the Hodge decomposition of the forms v, dy and dx

v = dve + d†vce + vh, dy = dye + yh, dx = dxe + xh. (60)

The 1-form v is separated into exact (ve is single valued function), co-exact
and the harmonic (dvh = 0 = d†vh) parts, while the closed 1-forms dy
and dx have only the exact and the harmonic parts. The integration with
respect to ye in (58) forces the field strength of the gauge field to vanish due
to the appearance of the δ(dv) which also causes the path independence of
∆V µ. Using dv = 0 and the Riemann bilinear relation, the last term in the
exponent becomes ∫

Σ
vyh =

∮
a
v

∮
b
yh −

∮
a
yh

∮
b
v, (61)

where a and b represent the canonical homology basis for the torus.

All nontrivial holonomies come from the harmonic parts of dy and v, yh =
y0αdξ

α, vh = v0αdξ
α. Restricting the coordinate y to periodic one y ∼

y + 2πR, and integrating over y0a and y0b we obtain

Z =

∫
Dve dv

0
adv

0
b

∑
na∈Z

δ
(Rv0b

α′ − na

) ∑
nb∈Z

δ
(Rv0a

α′ − nb

)
e−S(v,∆V ). (62)

Let us at this point, confirm that ∆V µ does not depend on the choice of the
path P . Let P1 be some other path with the same initial ξα0 and the final
point ξα as the path P . Then, the difference in ∆V µ along closed curve
PP−1

1 , homological to a curve maa+mbb, (ma,mb ∈ Z), is the integral of
the harmonic form

∆V [P ](ξ)−∆V [P1](ξ) =

∮
PP−1

1

vh = 2π(mav
0
a +mbv

0
b ). (63)

Now, performing the integration over v0a and v0b in (62), we obtain

Z =

∫
Dve

∑
na,nb∈Z

e−S(v,∆V ), (64)

where closed form v ∼ v + 2πr becomes periodic with

r =
α′

R
. (65)

At the same time (63) turns to

∆V [P ] = ∆V [P1] + 2πrk, (k = manb +mbna ∈ Z). (66)
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So, variable ∆V µ is periodic, with the same period r as the x coordinate.
Therefore, the only trace of the path dependence of V µ is its winding.

Substituting ve → xe, vh → xh we obtain the initial theory

Z →
∫

Dxe
∑

na,nb∈Z
e−S(dx,x) =

∫
Dx e−S[x] = Z0 (67)

with x ∼ x+ 2πr.

Therefore, the winding modes of the Lagrange multiplier yµ act as the
Lagrange multipliers for the holonomies.
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