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Abstract

In this lecture I discuss gravity in the light-front formulation (light-cone gauge)
and show how possible counterterms arise. We find that Poincaré invariance is not
enough to find the three-point counterterms uniquely. Higher-spin fields can in-
trude and mimic three-point higher derivative gravity terms. To select the correct
term we have to use the remaining reparametrization invariance that exists after
the gauge choice. We finally sketch how the corresponding programme for N = 8
Supergravity should work.

1. Introduction

Einstein’s gravity theory is perhaps the most beautiful theory ever con-
structed. It works over a fantastic range of scales. It is only when we
approach Planck scales that we believe that it has to be augmented. As
a quantum field theory it is obviously non-renormalizable, but if we only
consider scattering amplitudes it works better than expected. This was
first shown in the famous paper by ’t Hooft and Veltman [1], who showed
that the S-matrix indeed was finite at the one-loop level. After a remark-
able effort Goroff and Sagnotti [2] finally showed that the two-loop on-shell
amplitudes are infinite. From a particle physicist’s point of view this means
that the theory has to be modified in order to be a perturbatively finite
theory. Both the Superstring Theory and the Supergravity theories are
theories that avoid the problems of ordinary gravity at lower loop orders
and at the same time open up to fundamental theories including all in-
teractions. We have very strong indications that Superstring theories are
indeed perturbatively finite [3, 4], and in the end this is where we should
look for the Theory of Everything, but also the maximally supersymmetric
(N = 8) supergravity theory has shown remarkable quantum properties.
For a review see [5]. There are strong indications that the theory is per-
turbatively finite up to the seven-loop level. This is based on both real
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hardcore numerical computations [6] as well as the possible construction
of counterterms [7, 8, 9]. However, as we will see in this paper the con-
struction of counterterms is quite delicate and can never be the ultimate
proof that a theory does diverge. In order to prove finiteness we do need
an analytic proof of some kind.

Two of the analytic proofs [10, 11] for the finiteness of the sister theory the
N = 4 theory were based on light-front techniques (the light-cone gauge).
We have previously also set up ordinary gravity [12] as well as N = 8 Su-
pergravity [13] in this formalism. In this paper we will take that formalism
further by asking what kind of counterterms can be constructed in this
formalism. We do not expect, of course, to find anything but the already
established results, but it is always interesting to view the problem from
a different perspective. We will see in the course of the calculations that
we must have a very precise knowledge of all the symmetries of the theory.
The “lc2 formalism” of gravity [12] in which only the two physical degrees
of freedom are present can be seen as a (non-linear) representation of the
Poincaré algebra. This works in the construction of the gravity Lagrangian
at least up to the four-point coupling. However, we will find that in order to
find the appropriate counterterms we have to impose a further symmetry.
This can be seen as the remnant of the reparametrization invariance once we
have fixed the gauge to the light-cone gauge and eliminated all unphysical
degrees of freedom. The remaining (residual) symmetry will look infinites-
imally as a Virasoro-like symmetry in the tangent plane. Hence gravity in
this formalism can be viewed to a certain extent as a 2d conformal theory
imbedded in a 4d Poincaré invariant theory.

In section 2. we will set up gravity in the light-front formulation. We will do
it as a purely algebraic exercise and show that it gives a unique three-point
coupling. In section 3. we will find possible counterterms by closing the
Poincaré algebra. We will see that just finding a (non-linear) representation
of the Poincaré algebra to that order will not determine the counterterms
precisely. This is discussed in section 4., where the solution to this dilemma
is given. It amounts to realize that there are contaminations from higher
spins and we show that there is a remaining infinitesimal reparametrization
invariance in the transverse plane left which fixes the counterterms uniquely.
This symmetry contains indeed a Virasoro-like symmetry and in section 5.
we discuss its further use and end in section 6. with a discussion how to
take the results from this paper over to the N = 8 Supergravity theory.

2. Gravity in the light-frame formulation

In the light-frame formulation we start by introducing light-frame coordi-
nates

x± =
1√
2
(x0 ± x3),∂± =

1√
2
(∂0 ± ∂3), (1)
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satisfying ∂−x+ = −1 = ∂+x−, and rewrite the transverse coordinates and
its derivatives as complex entities

x =
1√
2
(x1 + ix2),x̄ =

1√
2
(x1 − ix2), (2)

∂ =
1√
2
(∂1 + i∂2),∂̄ =

1√
2
(∂1 − i∂2). (3)

We use space-like metric (∂x̄ = ∂̄x = 1).

We write the Poincaré generators Pµ and Jµν with similar definitions and
obvious notations as P+, P−, P and P̄ , and J+, J̄+, J+−, J, J− and J̄−.
Here J = J12 is the helicity generator and measures the helicity of the
field. According to Dirac we can take any direction within the light-cone
as the time axis and we choose then x+ to be the “time”. Since we are
only going to look at massless fields we implement the mass-shell condition
PµP

µ = 0 and write for the free theory

P− = −i ∂∂̄
∂+

. (4)

The division with ∂+ is quite harmless and will be done in most formulae
in the sequel. It is a non-local operation which can be thought of as an
integral. The relevant formula to remember is

∂+
1

∂+
f(x−) = f(x−). (5)

One can also Fourier transform it and then it corresponds to a pole in the
momentum p+, and the burden is then to exactly define the pole. There
are various descriptions for that [11, 14]. Since P− is conjugate to the
time x+ it is the Hamiltonian and p+ can be thought of as the mass in a
non-relativistic analogy.

Since P− is the Hamiltonian it will get non-linear terms in the interaction
theory. We will implement the Poincaré generators by letting them act as
derivative operators on the field. That will mean that the general form for
the Hamiltonian will be

P−φ = δP−φ = −i ∂∂̄
∂+

φ+ F (φ, φ̄) +G(φ,φ, φ̄) + . . . . (6)

The equation of motion is found by setting

−i∂−φ = P−φ. (7)

All the generators with a (−) index such as J+−, J−, J̄− will be generators
that take the field forward in time. They will all have non-linear contri-
butions. We will construct the algebra at x+ = 0 which will mean that
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the generator J+− will still be linear. After Dirac we call the linearly real-
ized generators the kinematical ones and the non-linearly realized ones the
dynamical ones or the Hamiltonians.

When constructing the helicity generator one finds by closing the free al-
gebra the most general form to be

J = x∂̄ − x̄∂ − λ, (8)

where λ is an arbitrary number. When closing the algebra at the three-
point level one finds it to be an integer, the helicity of the field. Here we
only consider commuting fields.

Let us now summarize the result of paper [12]. For any even spin λ one
can construct a three-point self-interaction according to the formula

δαP−φ=α
∑
n=0

(−1)n
(λ
n

)
∂+

(λ−1)

[
∂̄(λ−n)

∂+(λ−n)
φ
∂̄n

∂+n φ

]
+f(φ, φ̄)+g(φ,φ, φ̄)+ .. .

(9)
In the case of odd spin we get the same formulae but we have to introduce
fields which carry a group index and we have to use a structure constant
in the amplitude to get a proper antisymmetry. The factor f(φ, φ̄) is de-
termined by constructing the integral term corresponding to the variation
(9) in a second-quantized form. The term we have computed will be of the
form φ̄ φ φ. The term f above will then come from the complex conjugate
term. The Hamiltonian is real so we have to add the complex conjugate
term. By taking the variation with respect to φ̄ of that term will give us
the term f(φ, φ̄). We will hence get that term for free in our computations.

Let us now introduce a coherent state-like formalism [15]. We construct
the operators (partly for future use)

E = ea
ˆ̄∂+b∂̂ and E−1 = e−a ˆ̄∂−b∂̂ , (10)

with

ˆ̄∂ =
∂̄

∂+
and ∂̂ =

∂

∂+
. (11)

We can then rewrite the Hamiltonian variation as

δαP−φ = −iα ∂+(λ−1)
[
ea

ˆ̄∂φe−a ˆ̄∂φ
] ∣∣∣

aλ
+ f(φ, φ̄) + ..., (12)

where
∣∣∣
aλ

means that we expand to power aλ and keep only those terms.

In ref. [12] we give all the generators including the non-linear terms in the
other dynamical generators. These expressions are unique if we insist on
having a minimal power of the transverse derivatives. We only expect the
three-point coupling for the gravity case λ = 2 to be the beginning of an
infinite series of higher-point functions of a self-interacting theory. The
higher-spin fields will necessarily couple to each other bringing in all the
higher-spins to get a consistent Poincaré invariant Hamiltonian.
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3. Counterterms

A necessary condition for the computations above is that the coupling con-
stant α has dimensions length(λ−1). This means that from gravity and up-
wards in spin the coupling constant necessarily has a dimension and that
the three-point coupling that we have just shown cannot be unique. More
derivatives in the interaction term can be compensated by α to the appro-
priate power. Let us now specialize to the gravity case and check the next
type of terms that can be consistent with Poincaré invariance. We now call
the coupling constant for its real name κ and the fields for h and h̄.

3.1. One-loop counterterms

The one-loop three-point counterterms in the Hamiltonian transformation
are of order κ3 and are quartic in transverse derivatives. A possible struc-
ture of the Hamiltonian transformation that respects helicity is then

δκ
3

P−h ∼ ∂∂̄3hh+ ∂3∂̄ hh̄.

As described above we only need to consider the first term δκ
3

P−h ∼ hh.
Take the Ansatz, (which is not the most general one but enough for our
purposes)

δκ
3

P−h = κ3∂+n
[
E∂+mhE−1∂+mh

] ∣∣∣
a3, b

, (13)

with the dimension constraint

n + 2m = 3 . (14)

The boost transformations at one-loop are of the form

δκ
3

J−h = −x δκ
3

P−h+ δκ
3

s h, δκ
3

J̄−h = − x̄ δκ
3

P−h+ δκ
3

s̄ h. (15)

Thus the boost transformations are determined if we know the spin parts

δκ
3

s h, δκ
3

s̄ h. Comparing with the previous calculations, the spin parts of the
boosts have to be given by

δκ
3

s h = gs κ
3 ∂+n

[
E∂+(m−1)hE−1∂+mh

] ∣∣∣
a2, b

, (16)

δκ
3

s̄ h = gs̄ κ
3 ∂+n

[
E∂+(m−1)hE−1∂+mh

] ∣∣∣
a3
, (17)

where the coefficients gs and gs̄ will be fixed from commutation relations
among dynamical generators.

The “coherent state-like” formulation makes all the commutations with the
dynamical generators straightforward and they do not give any constraints.
The non-trivial ones to check are

[ δJ̄− , δP− ]h = 0, (18)

[ δJ− , δP− ]h = 0, (19)

[ δJ− , δJ̄− ]h = 0. (20)
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The remarkable outcome of these calculations are as follows: (18) gives

gs̄ = 2 i (m− 1), (21)

and (19) gives
gs = 2 i (m− 3), (22)

while (20) does not yield any further constraint. The free parameter m
is not determined! The technical reason for why this can happen at the
one-loop level is that the helicity constraint allows a non-zero term in δg1s̄ h,
which is not allowed at the tree level. We have a seemingly infinite series
of possible three-point couplings that all are consistent with the Poincaré
invariance to this order in the coupling constant and fields. Many of the
terms are related which can be seen by looking at the integral form of them,
but still there are far too many.

In the work of ’t Hooft and Veltman it was shown that there should exist
two different one-loop counterterms. In a covariant Lagrangian description
they are proportional to R2 or Rµν R

µν , since any term proportional to
Rµνρσ R

µνρσcan be written in terms of the other two because of the Gauss-
Bonnet theorem. It is also clear that both the possible terms would be zero
if one uses the mass-shell condition Rµν = 0.

How do we check if the counterterms that we have constructed would be
zero on shell? Here we will use a technique that we introduced when dis-
cussing possible counterterms for 5d maximally supersymmetric Yang-Mills
theory [16]. Consider the following relation among coherent-state expres-
sions.[
E∂+mhE−1∂+mh

] ∣∣∣
ap,bq

=
[
E∂̂ ˆ̄∂∂+mhE−1∂+mh − E ˆ̄∂∂+mhE−1∂̂∂+mh

−E∂̂∂+mhE−1 ˆ̄∂∂+mh+ E∂+mhE−1∂̂ ˆ̄∂∂+mh
] ∣∣∣

ap−1,bq−1
. (23)

Suppose we now consider

�
[
E∂+mhE−1∂+mh

] ∣∣∣
ap,bq

=−1

2
(∂+∂− − ∂ ∂̄)

[
E∂+mhE−1∂+mh

] ∣∣∣
ap,bq

(24)
and let the derivatives act on the expression. Every time we get ∂−h we

use the equations of motion to write it as ∂ ∂̄
∂+h+O(h2).

We then find that

�
[
E∂+mhE−1∂+mh

] ∣∣∣
ap,bq

= − 2
[
E∂+(m+1)hE−1∂+(m+1)h

] ∣∣∣
ap+1,bq+1

+O(h3) . (25)

Let us use now add in the possible counterterms in the equations of motion
to get
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i∂−h = i
∂ ∂̄

∂+
h− iα ∂+

[
ea

ˆ̄∂h e−a ˆ̄∂h
] ∣∣∣

a2
+ f(h, h̄)

+κ3∂+n
[
E∂+mhE−1∂+mh

] ∣∣∣
a3, b

+ . . . (26)

Let us so use (25) to substitute for the last term to get an equation

−2i�h = −iα ∂+
[
EhE−1h

] ∣∣∣
a2

+ f(h, h̄)

− 1

2
�κ3∂+n

[
E∂+(m−1)hE−1∂+(m−1)h

] ∣∣∣
a2

+O(h3). (27)

We can now make a field redefinition

h′ = h+
i

4
κ3∂+n

[
E∂+(m−1)hE−1∂+(m−1)h

] ∣∣∣
a2
, (28)

to obtain the equation

−2i�h′ = −iα ∂+
[
Eh′E−1h′

] ∣∣∣
a2

+ f(h′, h̄′) +O(h′
3
). (29)

We can now drop the prime and we find only the tree-level equation of
motion remaining to this order in the fields. However we still have to
tackle the problem with the too many terms, but let us before that look at
higher loop orders.

3.2. Higher-loop 3-point counterterms

The formalism we have set up makes it completely straightforward to
check higher-loop (higher-derivative) counterterms. Let us try the following
Ansätze for the l-loop order

δκ
2l+1

P− h = κ2l+1∂+n
[
E∂+mhE−1∂+mh

] ∣∣∣
a2+l, bl

, (30)

δκ
2l+1

s h = gs κ
2l+1 ∂+n

[
E∂+(m−1)hE−1∂+mh

] ∣∣∣
a1+l, bl

, (31)

δκ
2l+1

s̄ h = gs̄ κ
2l+1 ∂+n

[
E∂+(m−1)hE−1∂+mh

] ∣∣∣
a2+l, bl−1

, (32)

with n+2m = 2l+1. Following the calculations performed in the one-loop
case gives immediately that the only constraints are

gs = 2 i (m− l − 2) , gs̄ = 2 i (m− l). (33)

As in the one-loop case there is still one parameter m that is free. We can
also redo the same calculations as above to show that all of these terms can
be absorbed in field redefinitions using the equations of motion.
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The key observation that a counterterm will be zero on-shell is that it
contains both kinds of transverse derivatives. However, when we get to
the two-loop level there is a new type of term that is consistent with the

helicity constraint, namely δκ
5

H h ∼ ∂6h̄ h̄ .

For this Ansatz, one easily sees that there is no possible term with two h̄’s

for δκ
5

s h because of helicity and the numbers of allowed transverse deriva-
tives. The non-linear terms are hence of the form

δκ
5

P−h = κ5∂+n
[
E∂+mh̄ E−1∂+mh̄

] ∣∣∣
b6
, (34)

δκ
5

s̄ h = gs̄ κ
5 ∂+n

[
E∂+(m−1)h̄ E−1∂+mh̄

] ∣∣∣
b5
. (35)

If we go through the relevant commutators with these Ansätze we find the
result that there is just one unique solution to (18)–(20). Indeed, we find

m = 4, n = −3, gs̄ = 4i.

Thus we have the solution

δκ
5

P−h = κ5
1

∂+3

[
E∂+4h̄ E−1∂+4h̄

] ∣∣∣
b6
, (36)

δκ
5

s̄ h = 4i κ5
1

∂+3

[
E∂+3h̄ E−1∂+4h̄

] ∣∣∣
b5
. (37)

From its construction it is clear that this is non-zero on-shell. We do expect
to find one such counterterm since the work of Goroff and Sagnotti [2].
In a covariant Lagrangian it must correspond to a term proportional to
RµνρσR

ρστηRτη
µν . This term (34) can also be extended to any loop order

l by changing the |b6 to |al,b(l+6) and change the powers of the ∂+’s to get
the correct dimension. Also all such counterterms can be shown to be zero
on-shell with the same technique as above.

Even before we solve the problem with too many possible counterterm
we have found that an on-shell three-point function in gravity has only
a singularity at the two-loop level. At any other loop-level the diverging
terms will be proportional to a p2 of any of the external legs. This is a fact
known in amplitude analysis circles [17].

4. Contamination from higher-spin fields and the residual
reparametrization invariance

The algebraic approach is approximate until one has computed all higher-
order terms. If we had the computational power to check higher-order
terms we expect to find that most counterterms we found at the three-
point level will not survive. Remember that the transformations are non-
linear and when we checked the Poincaré algebra we only did it to the
three-point level. There are contributions at the four-point level from the
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counterterms, when we check the algebra, which should be matched to
linear transformations of the four-point counterterms and this goes on ad
infinitum. We know the four-point coupling [18] which was computed from
the covariant formulation. It is quite complicated and unless we can find
some better way of summarizing it, the checking of the counterterms at the
four-point level is computationally quite hard.

There is a further problem in the formalism. As seen in (9) we describe
all even-spin fields with a complex index-free field. Consider for example
a spin-4 field described covariantly by ϕµνρσ. In the light-frame formula-
tion we would correspondingly have a field where the indices run over the
transverse components, if we use SO(2) as the helicity symmetry instead of
U(1). Such a field has five degrees of freedom with helicities 4, 2, 0, −2, −4.
By taking a trace of this field we get the helicity 2 and −2 field and the
helicity 0 component. By taking a double trace we get the helicity 0 field.
The helicity 4 and −4 field is obtained by subtracting out the other helici-
ties. This is the normal procedure, but we can also get the helicity 2 and
−2 components if we so wish. The field ϕµνρσ has naturally a three-point
self-interaction with four derivatives. Neither the helicities 4 and −4 nor
the helicities 2 and −2 will be a consistent self-interacting field theory to
all orders. However, they can both have a consistent three-point coupling
to this order. The one for the helicities 2 and −2 must then be among the
counterterms we found in (13).

It is now meaningless to try to explain all the unwanted counterterms in
(13). The question is if we have missed any symmetry that can be used
to give a unique answer. Indeed we have. Even if we believe that the
algebraic approach will give the unique theory given the computational
needs to compute to all orders, there is indeed a further symmetry in the
lc2 formulation, the remaining gauge invariance. This is a hint that there is
more to gravity than meets the eye. Note that the light-cone gauge choice
is a physical one and hence there is no BRST symmetry in this gauge. Let
us now follow the steps from a covariant formulation to see what happens
to the reparametrization invariance.

Recall that in the covariant formulation we write the metric tensor in terms
of the gravity field as

gµν = ηµν + κhµν , (38)

where hµν is symmetric. Its inverse is defined so that gµρgρν = δµν and
thus yielding

gµν = ηµν − κhµν + κ2hµρhρ
ν − κ3hµρhρ

σhσ
ν + · · · , (39)

where the indices for hµν are raised and lowered through ηµν = diag(−,+,+,
+), e.g., hµν = ηµρηνσhρσ.

One can fix the gauge as g−− = g−i = 0, g−+ = −1, or equivalently

h+µ = 0. (40)
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This eliminates four degrees of freedom. To eliminate all the unphysical
degrees of freedom, we use equations of motion to eliminate these degrees of
freedom in terms of the physical ones. This procedure will generate higher
order interactions that are not in the covariant theory. The equation of
motion that we use is Einstein equation for vacuum, Rµν = 0 . It follows
from

R−− = 0 =⇒ ∂+2hii = 0 (to lowest order in κ) (41)

that hij is traceless (h
i
i = 0). Once the traceless condition is implemented,

the Einstein equation for each component can be summarized as, to lowest
order,

R−i = 0 −→ h−i =
∂j
∂+

hij ,

R+− = 0 −→ h−− =
1

∂+2
∂i∂jh

ij ,

R+j = 0 −→ 1

∂+2
∂i∂

2hij = 0,

Rij = 0 −→ −κ
2
∂2hij = 0,

R++ = 0 −→ −κ
2

∂i∂j
∂+2

∂2hij = 0, (42)

which agree with [19]. The first two equations show that the unphysical
degrees of freedom, h−i and h−−, can be replaced by the physical ones hij ,
and the other equations are proportional to the equation of motion for the
physical degrees of freedom, ∂2hij . The higher-order terms will lead to new
interaction terms in the physical fields.

This leaves us with only two degrees of freedom, say, h11 and h12. One then
defines

h =
1√
2
(h11 + ih12), (43)

h̄ =
1√
2
(h11 − ih12), (44)

or

h11 =
1√
2
(h+ h̄), (45)

h12 = − i√
2
(h− h̄), (46)

and the dynamical equations will now only contain h and h̄.

We can now ask what happens to the reparametrizations with a parame-
ter ξµ(x+, x−, x, x̄). From the gauge fixings it is straightforward that the
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parameter for the residual reparametrizations must satisfy ∂+ξµ = 0. It
is also clear that since we only have h11 and h12 we are only interested in
transformations with the parameters ξ1,2. As usual we combine them to ξ
and ξ̄. Finally we have to check what constraints the equations that elimi-
nate the unphysical degrees of freedom give us. We find that a remaining
infinitesimal reparametrization invariance is the following,

δh =
1

2κ
∂ξ + ξ∂̄h+ ξ̄∂h, (47)

where ξ satisfies
∂̄ξ = 0, (48)

i.e. ξ = ξ(x̄). The transformation of h̄ is obtained by complex conjugation.
We see that this is a two-dimensional reparametrization x→ x+ ξ(x̄) and
x̄ → x̄+ ξ̄(x). These look like two-dimensional conformal transformations
but with x and x̄ interchanged in the transformations. Alas, this is not a
transformation that can be closed to generate a finite symmetry. This can
also be seen by commuting two transformations (47). Formally it looks as
if it closes with a parameter ξ12 =

1
2κ(ξ̄2∂ξ1− ξ̄1∂ξ2). However, it is obvious

that this expression satisfies ∂̄ξ12 ̸= 0. Can the transformations (47) still
be used? The answer is yes.

Consider the action after the gauge choice h+µ = 0 is implemented. It can
be written as

S =

∫
d4x (L(h, h̄) + Lalg). (49)

In order to get this form we have added and subtracted terms such that
Lalg consists of a sum of (infinite) quadratic expressions in the unphysical
fields which are also coupled to the physical ones. (We have completed
the square). Upon a functional integration it will only contribute some
determinant in ∂+ that can be disregarded. For a detailed analysis of the
corresponding action in N = 4 Yang-Mills theory, see [20]. By taking
functional derivatives of L(h, h̄) we will get the equations of motion and
hence the expressions δP−h from above. Both terms of the action are
invariant separately under the infinitesimal transformations (47). It is only
if we want to look for the finite symmetry in (49) that we will be led to
reparametrizations with parameters ξµ satisfying ∂+ξµ = 0, and that is the
true symmetry of the problem.

We are used to the fact that open algebras usually close on the equations
of motion. If we start with the transformations (47) and try to close it, we
will in the end be led to the bigger symmetry and to prove its closure we
will have to use the equations of motion for the unphysical fields as they can
be derived from Lalg in the action above. In this sense the transformations
close on-shell.

Consider now adding counterterms to (49). They will be generated from
the dynamical part which is L(h, h̄) and the algebraic part Lalg will not be
affected. In the new action
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S =

∫
d4x (L(h, h̄) + Lct(h, h̄) + Lalg). (50)

Lalg is still invariant under the infinitesimal transformation (47). Hence
the first two terms L(h, h̄) + Lct(h, h̄) must also be invariant under those
transformations. This is the reason why we can use (47) to distinguish
between the counterterms coming from spin-2 and the ones coming from
other spins.

4.1. Remaining reparametrization invariance of the countert-
erms

In order to select the correct counterterms we have to check which terms
do indeed satisfy the remaining reparametrization invariance. Since the
infinitesimal transformations (47) are non-linear they connect terms with
different number of fields h. The first counterterm has no lower-order term
to talk to since the transformations connect terms with the same number
of derivatives. Hence it must be annihilated by the inhomogeneous term
δh = 1

2κ∂ξ.

We start with the one-loop terms (13)

δHκ3
= κ3

∫
d4x δ

(
∂+h̄ ∂+(3−2m)

[
E∂+mhE−1∂+mh

] ∣∣∣
a3, b

)
. (51)

Consider first the case m = 0. The expression is then

δHκ3
= −κ3

∫
d4x δ

(
∂+4h̄

[
EhE−1h

] ∣∣∣
a3, b

)
. (52)

We see that varying δh̄ = 1
2κ ∂̄ξ̄ that that term will be zero since ∂+ξ̄ = 0.

The term to worry about inside the coherent state-like expression is when
one gets terms with ∂ξ, that is not multiplied by ∂̄ or/and ∂+. In the
expansions of the coherent state-like expression we see that such terms
occur and this term is not invariant. We easily see that we need m ≥ 2.
Consider so the case m = 2. In this case the term to worry about is the
variation of h̄. It is now not multiplied by a ∂+. We are hence left with a
term

δHκ3
= −1

2
κ2

∫
d4x ξ̄

[
E∂+2hE−1∂+2h

] ∣∣∣
a3, b

. (53)

Here both ∂ and ∂+ can be partially integrated and we see that the terms
we get by expanding the expression inside the bracket can be partially
integrated to cancel each other pairwise. In the case m > 2 we cannot
partially integrate ∂+ and the expression is easily seen to be non-zero.
We have hence seen that there is only one one-loop counterterm that is
consistent with the residual reparametrization invariance, namely

Hκ3
= −κ3

∫
d4x h̄

[
E∂+2hE−1∂+2h

] ∣∣∣
a3, b

, (54)
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or in the “equation of motion” from (13)

δκ
3

P−h = κ3
1

∂+
[
E∂+2hE−1∂+2h

] ∣∣∣
a3, b

. (55)

The fact that only one term survives might look a bit puzzling at the first
moment. We know and have argued earlier in the paper that there should
be two terms. However if we consider the two terms R2 and Rµν R

µν and
reduce them to the lc2 formulation we will find that they contain the same
three-point coupling. They only differ in higher-order terms. Hence we
have understood the counterterms at the one-loop level.

At the two-loop level we only found one possible term with six transverse
derivatives which is non-zero on-shell. This term must then satisfy the cor-
rect remaining reparametrization. Here we give explicitly that calculation.
The variation on two-loop counterterm that we found (36) is

δHκ5
= κ5

∫
d4x

1

∂+2
δh̄

[
E∂+4h̄E∂+4h̄

]
b6

(56)

∼ κ4
∫
d4x

1

∂+2
∂̄ξ̄

(
2∂+4h̄

∂6

∂+2
h̄− 12∂+3∂h̄

∂5

∂+
h̄ (57)

+30∂+2∂2h̄∂4h̄− 20∂+∂3h̄∂+∂3h̄
)
.

The invariance of this counterterm under the inhomogenous part of the
variation of the remaining gauge transformation can be seen from repeated
use of partial integration with respect to 1/∂+. Cancellation of terms fol-
lows from that the coefficients of each term above come binomial expansion.
An elegant way to see this is to use the identities of the coherent-like forms.
Using the identity

E−1
[
Ef1 f2

] ∣∣∣
b6

=
1

∂+p

[
Ef1E

−1∂+pf2

] ∣∣∣
b6
, (58)

one can re-express (56) as

κ5
∫
d4x

1

∂+2
∂̄ξ̄E−1∂+6

[
E∂+4h̄

1

∂+2
h̄
]
b6
. (59)

After the integrations by parts, it becomes

κ5
∫
d4xE−1∂+6

( 1

∂+2
∂̄ξ̄

)[
E∂+4h̄

1

∂+2
h̄
]
b6
, (60)

which vanishes because of the gauge constraint ∂+ξ̄ = 0 = ∂∂̄ξ̄.
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5. Some Consequences from the Virasoro-like Symmetry.

In the previous sections we have argued that the transformations (47) is
important in order to find the form for the counterterms. We will here
show that it has further consequences also for the form of the Hamiltonian.
Introduce the following “covariant derivatives”

Dh̄ = ∂h̄+
2κ

∂+2

[
h∂̄∂+2h̄− ∂̄

∂+
h∂+3h̄

]
+O(h3), (61)

D̄h = ∂̄h+
2κ

∂+2

[
h̄∂∂+2h− ∂

∂+
h̄∂+3h

]
+O(h3). (62)

We can then write the Hamiltonian at least up the to three-point level as

H = P− =

∫
d4xDh̄D̄h. (63)

We expect it to be true to all orders. We can check that D̄h transforms
covariantly under (47). Since the transformation parameter ξ satisfies
∂+ξ = 0 we can easily see that the transformations do not uniquely de-
termine the form of the “covariant derivatives”, since different powers of
∂+ properly distributed can give terms that transform the same. To select
between them we have to check the transformations under the Poincaré
transformations.

We could use this form in the functional integral and derive expressions for
the S-matrix to see if they have a better UV-property than what meets the
eye from power counting. We might come back to it but since we know
that gravity is diverging in the UV we will instead use our knowledge and
take it over to the N = 8 Supergravity theory.

6. Extension to N = 8 Supergravity

It would take us too far to in detail to also do the same programme for
the N = 8 Supergravity theory in this paper. Here we will just sketch how
this programme will work and be content to show that there are no three-
point counterterms in this theory, a fact which has been known since the
early days of supergravity [21]. The detailed work to look for higher-point
counterterms will be delayed to future papers. We begin by giving a brief
overview of the light-frame formulation of the N = 8 theory [13, 15].

To formulate N = 8 Supergravity on the light-cone, one considers the
superspace spanned by eight Grassmann variables, θm and their complex
conjugates θ̄m (m = 1, ..., 8), on which SU(8) acts linearly. The chiral
derivatives are defined as

dm ≡ − ∂

∂θ̄m
− i√

2
θm∂+ , d̄m ≡ ∂

∂θm
+

i√
2
θ̄m∂

+ , (64)

which satisfy canonical anticommutation relations
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{
dm , d̄n

}
= − i

√
2δmn∂

+ . (65)

The 256 physical degrees of freedom of N = 8 Supergravity are the spin-2
graviton h and h, eight spin-32 gravitinos ψm and ψm, twenty eight vector
fields

Bmn ≡ 1√
2

(
B1

mn + i B2
mn

)
, (66)

and their conjugates, fifty six gauginos χmnp and χmnp, and finally seventy
real scalars

Dmnpq =
1

4!
ϵmnpqabcdD

abcd. (67)

They are all contained in one constrained chiral superfield

ϕ(y) =
1

∂+2 h (y) + i θm
1

∂+2 ψm (y) + i θmn 1

∂+
Bmn (y)

− θmnp 1

∂+
χmnp (y) − θmnpqDmnpq (y) + iθ̃ mnp χ

mnp (y)

+ iθ̃ mn ∂
+Bmn (y) + θ̃ m ∂

+ ψm (y) + 4 θ̃ ∂+
2
h̄ (y), (68)

where the bar denotes complex conjugation, and

θa1a2...an = 1
n! θ

a1θa2 · · · θan ,
θ̃ a1a2...an = ϵa1a2...anb1b2...b(8−n)

θb1b2···b(8−n) .
(69)

Here one uses the chiral coordinates

y = (x, x̄, x+, y− ≡ x− − i√
2
θmθ̄m ) (70)

so that ϕ and its complex conjugate ϕ satisfy the chiral constraints

dm ϕ = 0, dm ϕ = 0. (71)

The complex chiral superfield is related to its complex conjugate by the
inside-out constraint

ϕ =
1

4 ∂+4
d1d2 · · · d8 ϕ, (72)

in accordance with the duality condition of Dmnpq (67).

It is now straightforward to see that there are no three-point counterterms
in this theory. Remember that the two-loop counterterm in gravity is of
the form

δP−h ∼ h̄ h̄. (73)
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If there were a similar counterterm in N = 8 Supergravity it must be of
the form

δP−ϕ ∼ ϕ̄ ϕ̄. (74)

However such an expression does not satisfy the chirality constraint (71).

As shown in [15] the integrated Hamiltonian can be written as a quadratic
form

H = P− =

∫
d4x d8θ d8θ̄ δq−ϕ

1

∂+3 δq−ϕ, (75)

where δq−ϕ is the dynamical supersymmetry transformation of the super-
field ϕ. This is one of the non-linear transformations of the superPoincaré
algebra. Besides that, it commutes with the E7 transformations [15]. We
can now look for counterterms in the transformation δq−ϕ that besides
transforming correctly under the full superPoincaré algebra and commutes
with the E7 transformations also satisfies the conditions given by the re-
maining gauge invariance. Since it is only the non-linear term that is im-
portant for the lowest lying counterterm it means that we should demand
that it is annihilated by

δh = ∂ξ, (76)

but also
δψm = ∂ϵ̄m (77)

and
δBmn = ∂Λ̄mn. (78)

These conditions can be cast into a superspace language and the whole
procedure can be done in superspace. We will come back to a more detailed
study in the future.

7. Conclusion

In this paper we have studied possible counterterms for ordinary gravity in
the light-front formulation, the lc2 formulation (the light-cone gauge for-
mulation), which only contains the physical degrees of freedom, the helicity
2 field h(x) and the helicity −2 field h̄(x). This formalism is a non-linear
representation of the Poincaré algebra and all the generators that take us
forward in the time x+ get non-linear contributions. We find that by mak-
ing general Ansätze for the non-linear terms that the closure of the algebra
is not enough to select the possible counterterms. We understand this as a
“contamination” of higher-spin fields with helicities 2 and −2 that can show
up at this stage of the calculation. We hence need some kind of symmetry
to select the correct gravity terms. In principle the lc2 formulation is a
fully gauge fixed one. However, we can find an infinitesimal local transfor-
mation in the transverse plane under which the Hamiltonian is invariant.
We can then understand that this transformation is part of the remain-
ing reparametrization invariance, which exist after the gauge condition is
chosen. In order to see the full invariance one has to add back all the un-
physical degrees of freedom to the action. However, we can argue that it
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is enough to check the infinitesimal transformations since the addition of
the counterterms does not change the part of the action which is quadratic
in the unphysical fields. Hence also the counterterms should be invariant
under the infinitesimal local transformations.

Perturbative quantum gravity in the Minkowski space clearly demands
more than the classical theory. Computing a certain S-matrix element
to a certain loop-order will only include terms up to a certain order in the
expansion. Our formulation is unitary, causal and Poincaré invariant. By
just using these criteria we do not get a unique result. This shows that
gravity in Minkowski space contains more than just a unitary, causal and
Poincaré invariant theory of spin-2 particles. This is clearly important for
the quantum properties of the S-matrix.

We have also shown how to take this formalism to the N = 8 Supergravity
theory and we have sketched on how to check for possible counterterms in
that theory. We intend to come back to that issue in the future.

This lecture is based on a paper [22].
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