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Abstract

In this contribution I review the main results concerning analytic lump solutions in
open bosonic string field theory and discuss a mathematical problem linked to their
definition. I show that it is possible to eliminate any ambiguity by interpreting
the solution string field in a context of extended distribution theory.

1. Introduction

Recently there has been step forward in the search for analytic solutions in
cubic open string field theory (OSFT) à la Witten, [5]. Following an earlier
suggestion of [14], a general method has been proposed, [1], to find new
exact analytic solutions, and in particular solutions that describe inhomo-
geneous tachyon condensations. On general grounds it is expected that an
OSFT defined on a particular boundary conformal field theory (BCFT) has
classical solutions describing other boundary conformal field theories [6, 7].
Analytic solutions have actually been constructed describing the tachyon
vacuum [8, 15, 9]. But exact solutions describing inhomogeneous and rel-
evant boundary deformations of the initial BCFT were not known until
recently, though their existence was predicted [6, 7]. This absence was
filled up in [14, 1], and in [2, 3] the energy of a D24-brane solution was
calculated for the first time. In [4] these results were extended to analytic
SFT solutions corresponding to D(25-p)-branes, for any p, and their energy
was calculated.

In section 2 of this contribution I will review the results of [1, 2]. However I
will take advantage of these proceedings to deal with a mathematical prob-
lem one often meets in the search for analytic SFT solutions, but has not
been yet treated in a satisfactory way. A particular version of this question
was raised in [3] and a partial solution to it was proposed in appendix D
of [2]. Several formal aspects related to it where addressed in [11]. In this
note we would like to return to this issue in a more general framework,
that of distribution theory. The problem manifests itself, for instance, as a
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would-be violation of the SFT equation of motion for the string field candi-
dates considered in [1, 2, 4, 3], which originates from the use of a Schwinger
parametrization of inverse elements. We have argued elsewhere that, when
the issue is considered in the proper setting, no violations to the equation
of motion occur for the solutions considered in [2, 4]. The offending term,
when inserted in convergent integrals, gives vanishing contributions and, on
the other hand, can give nonvanishing (but ambiguous) contributions only
if inserted in discontinuous integrals (see below for the precise meaning).
This suggests that the appropriate mathematical setting to interpret them
is the theory of distributions. We suggest that the lump solutions must
be considered as distributions. Once this is done, any ambiguity linked to
spurious terms in the equation of motion disappears. In this contribution
we wish to set the stage for a rigorous treatment of this problem.

The paper is organized as follows. After reviewing the results of [1] and
[2] in section 2, in section 3 we outline the problem that arises when we
represent 1

K+ϕu
by means of a Schwinger parametrization. Section 4 is a

pedagogical review of the main ideas in (ordinary) distribution theory which
we intend to extend from functions to string fields. In section 5 the case of
Fock space is discussed and in section 6 the space of good string test states
is introduced and its topologies are discussed. In section 7 we introduce
the dual space, i.e. the space of linear functionals, which is proposed as the
correct space where the string fields of SFT belong.

2. Review of results on analytic lumps

In [1], to start with, the well-known K,B, c algebra, where K,B, c are
defined by

K =
π

2
KL

1 |I⟩, B =
π

2
BL

1 |I⟩, c = c

(
1

2

)
|I⟩, (1)

was enlarged as follows. In the sliver frame (obtained by mapping the
UHP to an infinite cylinder C2 of circumference 2, by the sliver map z̃ =
2
π arctan z), by adding a (relevant) matter operator

ϕ = ϕ

(
1

2

)
|I⟩ (2)

with the properties

[c, ϕ] = 0, [B,ϕ] = 0, [K,ϕ] = ∂ϕ, (3)

In this new algebra Q has the following action:

Qϕ = c∂ϕ+ ∂cδϕ. (4)

It can be easily proven that

ψϕ = cϕ− 1

K + ϕ
(ϕ− δϕ)Bc∂c (5)
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does indeed satisfy the OSFT equation of motion

Qψϕ + ψϕψϕ = 0. (6)

It is clear that (5) is a deformation of the Erler–Schnabl solution, see [10],
which can be recovered for ϕ = 1.

In order to prove that (5) is a solution, one demands that (cϕ)2 = 0, which
requires the OPE of ϕ at nearby points to be not too singular.

Using the K,B, c, ϕ algebra one can show that

Qψϕ

B

K + ϕ
= Q

B

K + ϕ
+

{
ψϕ,

B

K + ϕ

}
= 1.

So, unless the homotopy–field B
K+ϕ is singular, the solution has trivial co-

homology, which is the defining property of the tachyon vacuum [14, 15].
On the other hand, in order for the solution to be well defined, the quantity

1
K+ϕ(ϕ−δϕ) should be well defined too. Finally, in order to be able to show

that (5) satisfies the equation of motion, one needs K + ϕ to be invertible.

In full generality we thus have a new nontrivial solution if

1. 1
K+ϕ is singular, but

2. 1
K+ϕ(ϕ− δϕ) is regular and

3. 1
K+ϕ(K + ϕ) = 1.

In [1] sufficient conditions for ϕ to comply with the first two requirements
were determined. Let us parametrize the worldsheet RG flow, referred to
above, by a parameter u, where u = 0 represents the UV and u = ∞ the IR,
and rewrite ϕ as ϕu, with ϕu=0 = 0. Then we require for ϕu the following
properties under the coordinate rescaling ft(z) =

z
t

ft ◦ ϕu(z) =
1

t
ϕtu

(z
t

)
(7)

and, most important, that the partition function

g(u) ≡ Tr[e−(K+ϕu)] =
⟨
e−

∫ 1
0 ds ϕu(s)

⟩
C1

, (8)

satisfies the asymptotic finiteness condition

lim
u→∞

⟨
e−

∫ 1
0 ds ϕu(s)

⟩
C1

= finite. (9)

It was pointed out in [1] that this satisfies the first two conditions above
i.e. guarantees not only the regularity of the solution but also its ’non-
triviality’, in the sense that if this condition is satisfied, it cannot fall in
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the same class as the ES tachyon vacuum solution. It would seem that the
last condition above cannot be satisfied in view of the first. But this is not
the case. This is the main issue discussed in sec.3 and 4.

We will consider in the sequel a specific relevant operator ϕu and the corre-
sponding SFT solution. This operator generates an exact RG flow studied
by Witten in [12], see also [13], and is based on the operator (defined in
the cylinder CT of width T in the arctan frame)

ϕu(s) = u(X2(s) + 2 lnu+ 2A), (10)

where A is a constant first introduced in [14]. In C1 we have

ϕu(s) = u(X2(s) + 2 lnTu+ 2A) (11)

and on the unit disk D,

ϕu(θ) = u(X2(θ) + 2 ln
Tu

2π
+ 2A). (12)

If we set

gA(u) = ⟨e−
∫ 1
0 ds ϕu(s)⟩C1 (13)

we have

gA(u) = ⟨e
− 1

2π

∫ 2π
0 dθ u

(
X2(θ)+2 ln u

2π
+2A

)
⟩D.

According to [12],

gA(u) = Z(2u)e−2u(ln u
2π

+A), (14)

where

Z(u) =
1√
2π

√
uΓ(u)eγu (15)

Requiring finiteness for u→ ∞ we get A = γ − 1 + ln 4π, which implies

gA(u) ≡ g(u) =
1√
2π

√
2uΓ(2u)e2u(1−ln(2u)) (16)

and

lim
u→∞

g(u) = 1. (17)

Moreover, as it turns out, δϕu = −2u, and so:

ϕu − δϕu = u∂uϕu(s). (18)
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Therefore the ϕu just introduced satisfies all the required properties and
consequently ψu ≡ ψϕu must represent a D24 brane solution∗.

In I the expression for the energy of the lump solution was determined by
evaluating a three–point function on the cylinder CT of circumference T in
the arctan frame. It is given by

E[ψu] = −1

6
⟨ψuψuψu⟩

=
1

6

∫ ∞

0
d(2uT ) (2uT )2

∫ 1

0
dy

∫ y

0
dx

4

π
sinπx sinπy sinπ(x− y) (19)

·g(uT )

{
−
(∂2uT g(uT )

g(uT )

)3
+G2uT (2πx)G2uT (2π(x− y))G2uT (2πy)

−1

2

(∂2uT g(uT )
g(uT )

)(
G2

2uT (2πx) +G2
2uT (2π(x− y)) +G2

2uT (2πy)
)}
.

where Gu(θ) represents the correlator on the boundary, first determined by
Witten, [12]:

Gu(θ) =
1

u
+ 2

∞∑
k=1

cos(kθ)

k + u
(20)

Moreover E0(t1, t2, t3) represents the ghost three–point function in CT .

E0(t1, t2, t3) = ⟨Bc∂c(t1 + t2)∂c(t1)∂c(0)⟩CT

= − 4
π sinπt1T sinπ(t1+t2)T sinπt2T .

(21)

Finally, to get (19) a change of variables (t1, t2, t3) → (T, x, y), where

x =
t2
T
, y = 1− t1

T
.

is needed.

The expression (19) has been evaluated in [2]. As it turns out, this ex-
pression has a UV (s ≈ 0, setting s = 2uT ) singularity, which must be
subtracted away. Therefore the result one obtains in general will depend
on this subtraction. In [2] it has been pointed out that a physical signif-
icance can be assigned only to a subtraction-independent quantity, and it
has been shown how to define and evaluate such a quantity. First a new
solution to the EOM, depending on a regulator ϵ, has been introduced†

ψϵu = c(ϕu + ϵ)− 1

K + ϕu + ϵ
(ϕu + ϵ− δϕu)Bc∂c. (22)

∗This solution was presented in the VI Mathematical Physics Meeting, Belgrade 2010.
†In [2] ψϵ

u was called ψϵ.
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its energy being 0 (after the same UV subtraction as in the previous case)
in the ϵ → 0 limit. Then, using it, a solution to the EOM at the tachyon
condensation vacuum has been obtained. The equation of motion at the
tachyon vacuum is

QΦ+ ΦΦ = 0, where QΦ = QΦ+ ψϵuΦ+ Φψϵu. (23)

One can easily show that

Φϵ0 = ψu − ψϵu (24)

is a solution to (23). The action at the tachyon vacuum is −1
2⟨QΦ,Φ⟩ −

1
3⟨Φ,ΦΦ⟩. Thus the energy of of the lump, E[Φ0], is

E[Φ0] = − lim
ϵ→0

1

6
⟨Φϵ0,Φϵ0Φϵ0⟩ (25)

= −1

6
lim
ε→0

[
⟨ψu, ψuψu⟩−⟨ψϵu, ψϵuψϵu⟩−3⟨ψϵu, ψuψu⟩+ 3⟨ψu, ψϵuψϵu⟩

]
.

The integrals in the four correlators at the RHS, are IR (s→ ∞) convergent.
The UV subtractions necessary for each correlator are always the same,
therefore they cancel out. In [2], after the UV subtraction, the result was

−1

6
⟨ψu, ψuψu⟩ = α+ β, lim

ϵ→0
⟨ψϵu, ψϵuψϵu⟩ = 0

1

6
lim
ϵ→0

⟨ψϵu, ψuψu⟩ = α− 2

3
β,

1

6
lim
ϵ→0

⟨ψu, ψϵuψϵu⟩ = α− 1

3
β (26)

where α+β ≈ 0.068925 was evaluated numerically and α = 1
2π2 was calcu-

lated analytically. So E[Φ0] = α turns out to be precisely the D24-brane
energy. In [4] the same result was extended to any Dp-brane lump.

3. The problem with the Schwinger representation

We now come to the remark of [3] concerning the above solution. In order
to obtain (19) one has to use the following Schwinger representation

1

K + ϕu
=

∫ ∞

0
dt e−t(K+ϕu) (27)

of the inverse of K + ϕu. When using such a Schwinger representation,
however, the identity

1

K + ϕu
(K + ϕu) = I, (28)
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would seem not to be satisfied. To illustrate the problem, let us calculate
the overlap of both the left and the right hand sides of (28) with Y =
1
2∂

2c∂cc. The right hand side is trivial and, in our normalization, it is

Tr(Y · I) = lim
t→0

⟨Y (t)⟩Ct⟨1⟩Ct =
V

2π
. (29)

To calculate the left hand side we need the Schwinger representation

Tr
[
Y · 1

K + ϕu
(K + ϕu)

]
=

∫ ∞

0
dtTr

[
Y · e−t(K+ϕu)(K + ϕu)

]
(30)

Making the replacement

e−t(K+ϕu)(K + ϕu) → − d

dt
e−t(K+ϕu) (31)

one obtains

Tr
[
Y · 1

K + ϕu
(K + ϕu)

]
= g(0)− g(∞) =

V

2π
− g(∞), (32)

which is different form (29) because g(∞) is nonvanishing. The latter rela-
tion is often written in a stronger form∫ ∞

0
dt e−t(K+ϕu)(K + ϕu) = 1− Ω∞

u , Ω∞
u = lim

Λ→∞
e−Λ(K+ϕu) (33)

This (strong) equality, however, has to be handled with great care. If the
latter is taken literally, we could also write

1

K + ϕu
=

∫ ∞

0
dt e−t(K+ϕu) +

1

K + ϕu
Ω∞
u (34)

instead of (27). This would imply that eq.(28) is not satisfied, and, conse-
quently, the equation of motion is not satisfied by ψu.

It is clear that we need a regularization and the latter can be provided by

lim
ε→0

1

K + ϕ+ ε
(35)

For ε ̸= 0 the inverse of K + ϕ + ε is well defined. The question is now:
does the limit (37) exist, and how is it defined? If we take algebraic ma-
nipulations at face value, using (35) one gets, [11],

Qψu + ψuψu = lim
ε→0

(
ε

(K + ϕu + ε)
(ϕu − δϕu)c∂c

)
which would imply a violation of the equation of motion.
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4. Solving the problem with distributions

The one described above is but an example of a frequently occurring prob-
lem in SFT. It concerns the existence and definition of such limits as

lim
ε→0

εa

K + ε
(36)

or

lim
ε→0

εa

K + ϕ+ ε
(37)

where a is a positive number, K = KL
1 |I⟩ and ϕ is, as above, a 2d matter

field. These objects, which are crucial in constructing and discussing an-
alytic solutions of the SFT equation of motion, are not altogether new in
the literature. They bring together two old problems. What is new is that
these old problems appear simultaneously in a new context, that of SFT.
First we remark that both (36) and (37) have ‘pointlike support’. Both in
fact can be nonzero only in correspondence with one particular value taken
by K or K + ϕ. For instance, in the first case, this corresponds to the zero
mode of KL

1 .

The previous expressions are somehow the analog of objects like

lim
ε→0

ε

x2 + ε
(38)

defined on the real line, which has support at x = 0. (38) is well-known
to be an ordinary distribution. Distributions may be ordinary functions,
but the interesting thing about them is that they allow us to define objects
which are almost functions but not quite. In order to be able to evaluate
them one has first to define a space of regular (test) functions with its
topology and define a rule in order to evaluate the distributions on such
test functions. Distributions are in fact linear functionals over the test
functions space. Therefore they belong to the dual space. The limit (38) is
taken in the dual space, which must therefore be equipped with an adequate
topology.

The previous simple considerations are meant to emphasize the fundamen-
tal role played by couples of dual spaces in carefully defining ordinary dis-
tributions. But, of course, (36) and (37) are no ordinary distributions. The
role of points in space for ordinary distributions is played in (36) and (37)
by states in first quantized string theory. This is not at all a new problem in
quantum mechanics. A similar one was met and solved long ago by means
of Gelfand triples (or rigged Hilbert spaces). Let us consider the simple
example of a 1d nonrelativistic particle on the real line. The quantum
description is obtained by solving the Schroedinger equation with suitable
convergence properties at infinity, so that the wave-function ψ is square
integrable on the real line. The completion of the space of such functions
leads to a Hilbert space H. However the position and momentum opera-
tors and polynomials thereof are not well defined on all the functions in the
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Hilbert space; for this to be the case one has to single out the subspace Φ
of smooth functions. This is not enough because neither in Φ nor in H can
we accommodate the eigenfunctions of the position and momentum oper-
ator. But the latter are appropriately accommodated in the dual space Φ′

of Φ, i.e. on the space of linear continuous functionals on Φ. An important
aspects is that the topology of Φ has to be chosen in such a way that the
application of the position and momentum operators are continuous, which
requires a stronger topology than the Hilbert space topology of H. As a
consequence the dual space Φ′ is larger. We have in fact the inclusion

Φ ⊂ H ⊂ Φ′

This is called rigged Hilbert space or Gelfand triple. The elements of Φ′

are often called ‘distributions’ too.

A similar construction has to be envisaged in order to correctly interpret
(36) and (37). The general structure is always the same. We have a space
of ‘regular’ objects, say R with a suitable topology, its completion R̄ and
the dual space R′ of ‘distributions’, with the inclusion

R ⊂ R̄ ⊂ R′ (39)

and with the duality rule in order to evaluate elements of R′ on elements
of R.

As we shall see, the construction we need is actually a hybrid of both
ordinary distributions and rigged Hilbert space.

5. Ordinary distributions

To prepare our main analysis it is worth going through a short introduc-
tion of the distribution theory, [22]. The purpose is to extract the essential
concepts underlying this theory, to be generalized later on. Distributions
or generalized functions are almost functions but not quite. In which sense
almost must be understood is explained by the following (qualitatively ex-
pressed) general result: Distributions can be reduced to finite order deriva-
tives of locally integrable functions. An example is the Dirac delta function
on the real line, which can be viewed as the derivative of the Heaviside step
function. The latter is of course locally integrable.

The reason why we need such objects is that they appear in many physical
problems, which cannot be described in terms of ordinary functions.

In order to be able to carefully define distributions one has to view them as
linear continuous functionals of a topological vector space formed by ordi-
nary continuous differentiable (up to a certain order) functions with good
convergence properties at infinity, hereafter called test functions. Defining
a functional means defining a (linear) rule that associates a number to any
test function. This rule always consists of a Lebesgue integral.

The (vector) space of test functions must be topological, because a topology
is necessary in order to tell what test functions are close and what are not.
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In this way we can define continuity for functionals. Also the dual space,
the space of functionals, must have a topology, because we want to be able
to take limits of distributions.

5.1. Example of test function spaces

Test functions will be denoted by Greek letters φ,ψ, .... A space of test
functions is, for instance, K(a): it is formed by all the functions on the real
line which are infinitely differentiable and have support inside the interval
|x| ≤ a. A linear combination of them has still the same characteristics,
therefore K(a) is a vector space. K(a) is also a topological vector space,
but its topology is quite nontrivial. In fact it is a countably normed vector
space, that is it is characterized by an infinite sequence of norms. They are
defined as follows

||φ||p = max|x|≤a{φ(x), φ′(x), . . . , φ(p)(x)}, p = 0, 1, 2, . . .

We have of course ||φ||p ≤ ||φ||p+1. SinceK(a) is a vector space its topology
is defined by a set of neighborhoods of 0. The latter are given by

Up,ϵ = {||φ||p < ϵ}

One can prove that this defines a topology.

We can complete K(a) with respect to one of these norms, say || · ||p. In

such a way we get K(a)p ≡ Kp(a). This is the space of all the functions
φ(x) with support in |x| ≤ a and continuously differentiable up to order p.
We have

K1(a) ⊃ K2(a) ⊃ . . . ⊃ K(a)

Another test function space is S. It is the space of functions φ(x) indef-
initely differentiable in R, that for |x| → ∞ tend to 0 more rapidly than
any power of 1/|x|. This is also a countably normed space. A third exam-
ple is the space Z(a) of entire analytic functions in the complex variable
z = x + iy, satisfying appropriate inequalities. It is a countably normed
space.

All the above test function spaces can be generalized to many variables.
They are countably normed. A generic countably normed test function
space will be denoted by the symbol Φ.

5.2. Distributions

Distributions are linear continuous functionals on a test function space Φ.
The space of such functionals (dual space) will be denoted by Φ′. The
rule for evaluating a functional f over a test function φ will be denoted by
f(φ) ≡ ⟨f, φ⟩. For instance, for any function φ ∈ K(a) we can define

⟨f, φ⟩ =
∫ a

−a
φ(m)(x)dµ(x)
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wherem is a fixed positive integer and µ a function with bounded variation.
One can prove that f is a distribution. Since Φ is countably normed we
can define

||f ||p = sup||φ||p≤1 |⟨f, φ⟩|,

which is a norm in the dual space Φ′
p of Φp. We have

Φ′ =

∞∪
p=1

Φ′
p

that is, Φ′ is also countably normed and it is the union of an increasing
sequence of Banach spaces whose norm is weaker and weaker:

Φ′
1 ⊂ Φ′

2 ⊂ . . . ⊂ Φ′

The so-defined topology of the dual is called strong. There is also a weak
topology. It is defined as follows. Take a finite set of test functions
φ1, . . . φm. Then a neighborhood of 0 in Φ′ is defined by the f ′s that
satisfy

|⟨f, φ1⟩| < ϵ, |⟨f, φ2⟩| < ϵ, . . . |⟨f, φm⟩| < ϵ

We have the following definition:

A sequence of elements of Φ′, fn, converge weakly to f ∈ Φ′ if and only if,
for any φ ∈ Φ we have

lim
n→∞

⟨fn, φ⟩ = ⟨f, φ⟩

It so happens that the dual Φ′ of a countably normed space Φ is complete
with respect to the weak topology.

For all the spaces K(a), S and Z the following representation theorem holds

Representation theorem. Any distribution f belonging to Φ′ admit the
following representation

⟨f, φ⟩ =
∫
dx f0(x)P (D)φ(x) (40)

where f0(x) is a locally summable function (Lebesgue integrable function)
and P (D) is a polynomial of D = d

dx .

A simple example of this theorem is provided by the Dirac delta function

⟨δa, φ⟩ = −
∫
dx θ(x− a)φ′(x)

where θ is the step function.
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5.2.1. Examples

An example of problem solved by distribution theory is the inversion of a
polynomial P (z) in the complex plane. The problem

P (z)f = 1 (41)

has always a solution in terms of a distribution in Z′. In particular the
function z or z − z0 has an inverse represented by a distribution in Z′.

Among these examples let us recall that distributions can often be defined
as limits of ordinary functions. For instance

δ(x) = lim
ε→0

1

π

√
ε

x2 + ε
(42)

This follows from the fact that∫ b

a
dx

√
ε

x2 + ε
=

1

π

(
arctan

b√
ε
− arctan

a√
ε

)
, (43)

Thus whenever the interval [a, b] includes 0, in the ε → 0 limit we get 1,
while if it does not contain 0 we get 0. This justifies (42), see [22]. In
the following we will meet an expression very similar to (42), but with an
important difference. The object we will have to discuss is the analogue of

lim
ε→0

1

π

ε

x2 + ε
(44)

Due to the additional
√
ε factor in the numerator the analogous integral

(43) always vanishes in the ε → 0 limit, even if the [a, b] interval includes
0. Therefore

lim
ε→0

1

π

ε

x2 + ε
= 0 (45)

as a distribution.

5.3. How large are the test function spaces

It would seem that there is an arbitrariness in the problem we have con-
sidered so far. Since a distribution f is determined by its values on test
functions, how do we know that this procedure is unique? In other words
suppose that for any φ ∈ Φ we have ⟨f, φ⟩ = 0, is the space Φ rich enough
for us to conclude that f = 0?

This problem is well formulated by the following definition: a test space Φ
is rich enough if, for any locally integrable function f(x), existence of the
integral ∫

dx f(x)φ(x), ∀φ ∈ Φ
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and ∫
dx f(x)φ(x) = 0, ∀φ ∈ Φ

imply that f(x) = 0 almost everywhere. This means that f is identically
zero if we restrict our consideration to elements of Φ alone.

The spirit of this definition is to guarantee that set of test functions is
a powerful enough filter that only very ‘fine’ non-regular behaviors can
pass through it. This filter cannot detect for instance functions which are
nonvanishing only in a set of measure zero, but it does detect any piecewise
regular behaviour and, in particular, any regular behaviour.

All the test spaces considered above are rich enough. Once this condition
is satisfied, we shall say that a distribution is zero if it vanishes when
contracted with all the elements of Φ.

Warning. Since the duality rule can be formally extended to a space larger
than the space of test functions, one can easily envisage a situation in which
a zero distribution when evaluated on a non-test function does not vanish.
But of course this is illegal.

6. The dual of the Fock space

We would like to present now an analog of the rigged Hilbert space ex-
ample introduced in sec.3, based on a Fock space rather than on a func-
tion space. Let us consider the string oscillators αn, with the algebra
[αm, αn] = mδn+m,0. We construct the corresponding Fock space F by
acting on the vacuum |0⟩ with the creation operators αn with n < 0. F is
the linear span of all the states of the type

|ϕn1,n2,...,ns⟩ = α−n1α−n2 . . . α−ns |0⟩, ni ∈ Z+ (46)

As is well known the oscillator algebra defines a scalar product once we
assume that ⟨0|0⟩ = 1. This also implies the definition of a norm ||ϕ|| =√

⟨ϕ|ϕ⟩. The completion of F with respect to this norm gives rise to a

Hilbert space H ≡ F which contains F as a dense subset.

Like in the quantum mechanical example in sec. 4, however, this Hilbert
space does not contain all the interesting states in SFT. For instance, it
does not contain wedge states and, generically, surface states, because such
states do not have a finite norm. Similar to the rigged Hilbert space we
would like to find a space larger than H. To this end we have to give up
the scalar product topology in F and introduce a stronger one. The linear
functionals which are continuous with respect to this stronger topology will
form the dual space F ′. If suitably chosen the space F ′ should allow us to
embed surface states and the like.

The Fock space F plays the role of R, the space of regular objects. There-
fore it is natural to say that, if a generic state vanishes when contracted
with all Fock space states, it is zero. The limitation to Fock space states
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is essential, when using this criterion, otherwise it is easy to construct a
counterexample. Consider a definite Fock space state ϕ0. It obviously has
finite contractions with all the other Fock space states. Therefore if we
consider ϕϵ = ϵϕ0, we have that limϵ→0 ϕϵ vanishes when contracted with
all the states of the Fock space. Thus limϵ→0 ϕϵ = 0 according to the above
criterion. If, on the other hand, we contract ϕϵ with states like 1

ϵϕ, where
ϕ is any Fock space state, in the limit ϵ → 0 we find a finite result. This
is not surprising since the norm of 1

ϵϕ becomes infinite in the ϵ → 0 limit,
thus is does not belong to F .

7. The space of test string fields

7.1. Preliminary discussion

The problem we would like to discuss here is the existence of the inverse of
K+ϕu. As we have pointed out K+ϕ = (KL

1 +ϕu(
1
2)|I⟩, where K

L
1 is the

left translation operator, a symmetric operator in the Fock space, and |I⟩ is
the star algebra identity. The spectrum of Ku ≡ KL

1 +ϕu(
1
2), which is also

a symmetric operator, lies in the real axis and is likely to include also the
origin. If it does and the identity string field contains the zero mode of Ku,
then a problem of invertibility arises. It was shown that the obstruction to
invert K + ϕu is measured by the expression

Aε = e−ε∂ε
ε

K + ϕu + ε
= lim

ε→0

ε

K + ϕu + ε
(47)

This quantity, whatever it is, can be nonvanishing only where K + ϕu
vanishes, i.e. in correspondence with the zero mode of Ku. Aε has support,
if any, only on this zero mode. It is a distribution-like object and must be
treated within the formalism of distribution theory. Of course the latter
must be suitably generalized to the framework of SFT in which instead of
a position in space (for instance r = 0 in ordinary field theory) is replaced
by a string configuration (for instance the state representing the zero mode
above). The correct evaluation of A(ε) is of upmost importance, for a naive
manipulation of the equation of motion leads to

Qψu + ψuψu = lim
ε→0

ε

K + ϕu + ε
(ϕu + δϕu)c∂c (48)

i.e. to an apparent violation of the equation of motion.

Our main claim is that Aε, when interpreted in the appropriate setting, is a
vanishing object, the zero in distribution theory (so, in particular, the RHS
of (48) is actually zero). Let us first come to this conclusion via heuristics.

7.2. A heuristic argument

The term Aε is of the type (42) or (44). Let us recall that the latter is
actually 0, see (45). Let us write

Aε = lim
ε→0

ε

∫ ∞

0
dt e−t(K+ϕu+ε) (49)
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We can think of replacing K + ϕu with its eigenvalue κ and integrating
over it to simulate the path integration. However, since in general the
factor e−t(K+ϕu+ε) appears in correlators multiplied by other factors for a
more realistic simulation we replace K + ϕu by κa, with a > 1 (it can only
be a power of κ since it must vanish for κ→ 0). Then we have

< Aε >≈ ε

∫ ∞

0
dte−tε

∫ m

0
dκ e−tκ

a ∼
{

ε
1
a a > 1

ε log ε a ≤ 1
(50)

where m is a small but fixed number. Thus Aε = 0, at least according to
this rough approximation.

In order to properly justify this conclusion we have to go first through the
full process of defining the appropriate space of test states and its dual.
As we have seen in the previous section, in function theory distributions
are the objects of the dual of a topological vector space. Our aim is to
interpret Aε as a distribution, i.e. a functional in a suitable topological
vector space. But of course this vector space is not the most general one,
rather it must have properties that assimilate it to a space of functions, and
the duality rule (i.e the rule by which we can evaluate a functional over the
test states) had better be an integral. This would allow us to use the
analogy with ordinary distribution theory as close as possible. Fortunately
this is possible in the present case, thanks to the Schwinger representation
of the inverse of K + ϕu:

1

K + ϕu
=

∫ ∞

0
dt e−t(K+ϕu) (51)

This representation makes concrete the abstract properties of the functional
in question and ‘localizes’ the zero mode of Ku at t = ∞ (for the repre-
sentation (51) becomes singular when K + ϕu vanishes). This ‘localization
property’ makes our life much easier because it allows us to formulate the
problem of defining test states, dual functionals and their properties in
terms of their t dependence via the Schwinger representation (51).

7.3. Good test string fields

Let us now construct a set of string states that have good properties in
view of forming the topological vector space of test states we need for our
problem.

We will proceed in a heuristic way. First of all the states we are looking for
must be such that the resulting contractions with Γ(ε) = Aε(ϕu − δϕu)c∂c
be nonsingular (with respect to singularities due to collapsing points). But,
especially, they must be characterized by integrable behaviour in the UV
and, ignoring the overall e−εt factor, in the IR. The IR corresponds to
t → ∞, where, as was noticed above, the zero mode of Ku is ‘localized’.
Therefore the IR behaviour will be crucial in our discussion. It is self-
evident that all the states with such properties annihilate Γ(ε), so it would
seem that we are preparing test states that already satisfy the condition
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we wish to prove. But, on the other hand, the only possibility of getting a
nonzero result is linked, as usual, to correlators characterized by IR linearly
divergent integrals (without the exponential e−εt). Now, such integrals are
characterized by the fact that their ε → 0 limit is discontinuous, therefore
the corresponding states can hardly be considered good test states. The true
question we have to ask, then, is whether the good test states we construct
are ‘enough’.

Consider states created by multiple products of the factor H(ϕu, ε) =
1

K+ϕu+ε
(ϕu − δϕu) and contract them with Λ(ε) = limε→0

1
K+ϕu+ε

(ϕu −
δϕu)Bc∂c. From what we said above we are looking for contractions which
are finite and whose ε→ 0 limit is continuous. More precisely, let us define

Ψn(ϕu, ε) = H(ϕu, ε)
n−1Bc∂cH(ϕu, ε), n ≥ 2 (52)

Contracting with Λ(ε): ⟨Ψn(ϕu, ε)Bc∂cB,Λ(ε)⟩, we obtain a correlator
whose IR and UV behaviour (before the the ε → 0 limit is taken) is not
hard to guess. The correlators take the form∫ ∞

0
ds sne−η̃sg(s) (53)

×
∫ n∏
i=1

dxi E

((
−∂g(s)
g(s)

)n+1

+ . . .+

(
−∂g(s)
g(s)

)n−k+1

Gks + . . .+Gn+1
s

)
where the notation is the same as in section 2 (s = 2uT and η̃ = ε

2u), but
we have tried to make it as compact as possible. The angular variables
xi have been dropped in E and Gs. Using the explicit form of Gs, [1],
expanding the latter with the binomial formula and integrating over the
angular variables, one gets∫ n∏

i=1

dxi EG
k
s =

k∑
l=0

1

sk−l

∑
n1,...,nl

Pl(n1, . . . , nl)

Ql(n1, . . . , nl)

l∏
i=1

1

pi(n1, . . . , nl) + s
(54)

the label l counts the number of cosine factors in each term. Here ni
are positive integral labels which come from the discrete summation in Gs;
pi(n1, . . . , nl) are polynomials linear in ni. Next, Pl and Ql are polynomials
in ni which come from the integration in the angular variables. Every
integration in xi increases by 1 the difference in the degree of Ql and Pl, so
that generically degQl − degPl = n. But in some subcases the integration
over angular variables gives rise to Kronecker deltas among the indices,
which may reduce the degree of Ql. So actually the relation valid in all
cases is degQl ≥ degPl. But one has to take into account that the number
of angular variables to be summed over decreases accordingly.

We are now in the condition to analyze the UV behaviour of (53). Let us
consider, for instance, the first piece

∼
∫ ∞

0
ds e−η̃ssn g(

s

2
)

(
∂sg(

s
2)

g( s2)

)n+1

(55)
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Since in the UV g( s2) ≈
1√
s
, it is easy to see that the UV behaviour of the

overall integrand is ∼ s−
3
2 , independently of n. As for the other terms, let

us consider in the RHS of (54) the factor that multiplies 1
sk−l (for l ≥ 2).

Setting s = 0, the summation over n1, . . . , nl−1 is always convergent, so
that the UV behaviour of each term in the summation is given by the
factor 1

sk−l , with 2 ≤ l ≤ k. It follows that the most UV divergent term

corresponds to l = 0, ∼ 1
sk
. Since in (53) this is multiplied by

sn g(
s

2
)

(
−
∂g( s2)

g( s2)

)n−k+1

(56)

we see that the UV behaviour of the generic term in (53) is at most as

singular as ∼ s−
3
2 . In conclusion the states Ψn, when contracted with Λ(ε),

give rise to the same kind of UV singularity ∼ s−
3
2 . Now, for any two

such states, say Ψn and Ψn′ , we can form a suitable combination such that
the UV singularity cancels. In this way we generate infinite many states,
say Φn, which, when contracted with Λ(ε), give rise to UV convergent
correlators.

Let us consider next the IR properties (s≫ 1). All the correlators contain
the factor e−η̃s which renders them IR convergent, but we have learnt that
the crucial IR properties (in the limit ε→ 0) are obtained by ignoring this
exponential factor. This is in order to guarantee the continuity of the ε→ 0
limit. So, in analyzing the IR properties we will ignore this factor. The
first term (55) is very strongly convergent in the IR, because ∂sg(

s
2) ≈

1
s2
,

while g( s2) → 1. For the remaining terms let us consider in the RHS of (54)

the factor that multiplies 1
sk−l (for l ≥ 2). To estimate the IR behaviour it

is very important to know the degree difference between the polynomials
Ql and Pl. Above we said that this difference is always nonnegative. In
principle it could vanish, but from the example with n = 2, see [2], we know
that there are cancellations and that in fact the difference in degree is at
least 2. If this is so in general, we can conclude that the IR behaviour of
the summation in the RHS of (54) with fixed l is ∼ 1

sl
. However, in order to

prove such cancellations, one would have to do detailed calculations, which
we wish to avoid here. So we will take the pessimistic point of view and
assume that, at least for some of the terms, degQl = degPl (in which case
there remains only one angular integration). In this case the IR behaviour
of the corresponding term cannot decrease faster than ∼ 1

sl−1 . This has to

be multiplied by ∼ 1
sk−l and by the IR behaviour of (56). This means that

the least convergent term with fixed k in(54) behaves as ∼ 1
sn−k+1 . Since

k ≤ n+1, we see that in the worst hypothesis in the integral (53) there can
be linearly divergent terms, before the e−ε∂εε operator is applied. If this is
so the UV converging Φn states are not good test states. However we can
repeat for the IR singularities what we have done for the UV ones. Taking
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suitable differences of the Φn’s (this requires a two steps process, first for
the linear and then for the logarithmic IR singularities, we can create an
infinite set of states, Ωn, which, when contracted with Λ(ε), yield a finite
result and whose ε→ 0 limit is continuous. Upon applying Γ(ε), instead of
Λ(ε), they of course vanish. These Ωn are therefore good (and nontrivial)
test states. They annihilate Γ(ε).

We remark that in eq.(52) the presence of ε in H(ϕu, ε) is not essential,
because in estimating the IR behaviour we have not counted the e−η̃s factor.
Using 1

K+ϕu
everywhere instead of 1

K+ϕu+ε
, would lead to the same results.

This means that contracting the Ωn states with Λε leads to finite correlators
with or without ε. We stress again that the ε→ 0 limit of such correlators
is continuous. This is the real distinctive features of good test states. The
property of annihilating Γ(ε), is a consequence thereof. This remark will
be used later on.

The Ωn(ϕu, ε) are however only a first set of good test states. One can
envisage a manifold of other such states. Let us briefly describe them,
without going into too many details. For instance, let us start again from
(52) and replace the first H(ϕu, ε) factor with 1

K+ϕu+ε
uX2k (the term δϕ

can be dropped). In this way we obtain a new state depending on a new
integral label k. However replacing X2 with X2k is too rough an operation,
which renders the calculations unwieldy, because it breaks the covariance
with respect to the rescaling z → z

t . It is rather easy to remedy by studying

the conformal transformation of X2k. The following corrected replacements
will do:

uX2 → u
(
X2 + 2(log u+ γ)

)
= ϕu ≡ ϕ(1)u

uX4 → u
(
X4 + 12(log u+ γ)X2 + 12(log u+ γ)2

)
≡ ϕ(2)u

. . . (57)

uX2k → u

(
k∑
i=0

(2k)!

(2k − 2i)!i!
(log u+ γ)iX2k−2i

)
≡ ϕ(k)u

The role of the additional pieces on the RHS is to allow us to reconstruct
the derivatives of g(s) in computing the correlators, as was done in [1].

Now let us denote by Ψ
(k)
n the n-th state (52) where ϕu − δϕu in the first

H(ϕu, ε) factor is replaced by ϕ
(k)
u . Contracting it with Λ(ε) it is not hard

to see that the term (55) will be replaced by

∼
∫ ∞

0
ds e−η̃s sn g(

s

2
)

(
∂sg(

s
2)

g( s2)

)n+k
(58)

with analogous generalizations for the other terms. It is evident from (58)
that the UV behaviour becomes more singular with respect to (55) while
the IR one becomes more convergent. This is a general property of all
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the terms in the correlator. Thus fixing k we will have a definite UV

singularity, the same up to a multiplicative factor for all Ψ
(k)
n . Therefore

by combining a finite number of them we can eliminate the UV singularity

and obtain another infinite set of UV convergent states Ω
(k)
n for any k (Ω

(1)
n

will coincide with the previously introduced Ωn). In general they will be
IR convergent (IR subtractions may be necessary for k = 2 beside k = 1).

It goes without saying that the previous construction can be further gen-
eralized by replacing in (52) more than one X2 factors with higher powers
X2k.

Qualitatively one can say that the correlators discussed so far have the form
of an s integral ∫ ∞

0
dsF (s) (59)

where the F (s) at the origin behaves as s
k
2 , with integer k ≥ −1, and

F with all possible k’s are present. At infinity, excluding the e−η̃s, F (s)
behaves as 1

sp , for any integer p ≥ 2. In addition, at infinity, we have any
possible exponentially decreasing behaviour.

8. The topological vector space of test states

Above we have introduced a countable set of good test states which will
be denoted generically by Ωα, α ∈ A being a multi-index. We recall that
in Ωα there is also a dependence on the parameter ε. Such a dependence
improves the IR convergence properties. We will include this dependence
in the multi-index α. The linear span of these state will be denoted by F.
It is a vector space. The problem now is to define a topology on it. First
of all we define

⟨Ωα|Ωβ⟩ ≡ ⟨ΩαBc∂cB,Λε⟩⟨ΩβBc∂cB,Λε⟩ (60)

where the RHS is the corresponding correlator. From the analysis of the
previous subsection this is a finite number, generically nonvanishing. When-
ever a correlator of this kind depends on ε, the limit ε → 0 exists and is
finite. Extending by linearity the definition (60) to all finite combinations
of the vectors Ωα we get an inner product. Thus F is an inner product
space. This inner product is not a scalar product in general. However it
is certainly nondegenerate (i.e. there are no elements with vanishing in-
ner product with all the elements of the space). The existence of an inner
product does not mean by itself that F is a topological vector space.

8.1. Seminorm topology

There are various ways to introduce a topology in an inner product space V,
see [23, 24]. We will use seminorms. Let us denote by x, y, ... the elements
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of V, and by (x, y) the inner product. A seminorm is a function in V that
satisfies the following axioms

p(x) ≥ 0

p(ax) = |a|p(x), a ∈ C (61)

p(x+ y) ≤ p(x) + p(y)

Once we have an (infinite) family pγ (γ is a generic index) of seminorms
we can define a topology τ in the following way: a subset V is open if
for any x ∈ V there is a finite subset pγ1 , pγ2 , . . . , pγn of seminorms and a
positive number ϵ, such that, any other element y satisfying pγj (x−y) < ϵ,
for j = 1, . . . n, belongs to V . A topology τ is locally convex if the vector
space operations are continuous in τ and if a τ -neighborhood of any point
x contains a convex neighborhood of the same point.

What we wish is of course a topology strictly related to the inner product.
Therefore we introduce the concept of partial majorant. A partial majorant
of the inner product (·, ·) is a topology τ which is locally convex and such
that for any y ∈ V the function φy(x) = (x, y) is τ -continuous.

In addition we say that a topology τ is admissible if 1) τ is a partial majo-
rant and 2) for any linear τ -continuous functional φ0(x) there is an element
y0 ∈ V such that φ0(x) = (x, y0). That is, all the continuous linear func-
tionals can be expressed as elements of V via the inner product.

It is easy to prove that in any inner product space the function py defined
by

py(x) = |(x, y)| (62)

is a seminorm. The corresponding topology is the weak topology τ0. This
topology has important properties. The weak topology τ0 is a partial ma-
jorant in V. If the inner product is non-degenerate the space is separated
(Hausdorff). Moreover τ0 is admissible.

When V is assigned the τ0 topology, it will be denoted by Vw.
For later use we have to define the concept of bounded set. A subset B is
bounded if for any neighborhood V of 0 there is a positive number λ such
that B ⊂ λV . In terms of seminorms we can say that B is bounded if all
seminorms are bounded by some finite number in B.

Now, let us return to F with the inner product ⟨·|·⟩ defined via (60). Using
it we can define an infinite set of seminorms as above and thereby the weak
τ0 topology. In virtue of the preceding discussion F becomes a topological
vector space with a separated admissible topology. We can also assume
that the second axiom of countability holds for F. This is due to the fact
that, apart from the ε dependence, we can numerate the basis of all possible
states Ωα. As for ε we can discretize it, i.e replace it with a sequence εn
tending to 0. In this way the index α is replaced by a discrete multi-index
ν and we obtain a countable set of seminorms pν . The neighborhoods of
the origin defined by these seminorms form a countable basis. Finally, F
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with the τ0 topology is not a normed partial majorant, therefore it is not
metrizable.

To stress that F is equipped with the τ0 topology we will use the symbol
Fw.

This is not yet what we need in order to proceed. The reason is that, since
the topology is admissible, any continuous functional can be expressed in
terms F, so in the dual there is no room for distributions. The τ0 topology
is ‘too weak’ to accommodate simultaneously a space of test states and
distributions. In F we need a stronger topology. We say that a topology τ1
is stronger or finer than τ2 (τ1 ≥ τ2) if any open set in τ2 is an open set also
in τ1. It is a theorem that if τ is locally convex and stronger than τ0 it is
also a partial majorant, which guarantees continuity of the scalar product
also wrt τ . We will shortly introduce on F the strong topology. But to do
so we need first to discuss the topology on the dual.

8.2. The dual space and the strong topology

Given a topological vector space V as above, the dual V ′ is the space of
linear continuous functionals. Let us denote linear continuous functionals
by x′, y′, ... and their evaluation over a point x ∈ V by x′(x), y′(x), ....

The weak topology over V ′ can be defined as follows: a sequence of linear
continuous functional x′n weakly converges to 0, if the numerical sequence
x′n(x) converges to 0 for any x ∈ V. This topology turns V ′ into a locally
convex topological vector space.

A subset B′ ∈ V ′ is (weakly) bounded if for any neighborhood U ′
ϵ of 0 in

V ′ there exist a positive number λ such that λB′ ⊂ U ′
ϵ.

The space V ′ with the weak topology will be denoted V ′
w.

We can immediately transfer these concepts to the space F′ of linear con-
tinuous functionals over F, which is therefore itself a convex topological
vector space. The space F′ with the weak topology will be denoted by F′

w.

Using the weak topology on V ′ we can now define the strong topology on
V. The latter is defined as the uniform convergence topology on all weakly
bounded subsets of V ′. This means that a sequence xn converges to 0 in V
if the numerical functions x′(xn) converge to zero uniformly for x′ in any
bounded subset B of V ′.

We recall that when V is assigned the weak τ0 topology, for any continuous
functional x′ ∈ V ′ we have x′(x) = (x, y) for some y ∈ V. This is generically
not true for the dual of V when V is equipped with the strong topology. The
dual of Vs is generally larger than V ′. The dual of Vs will be denoted by V ′

s.
It can itself be equipped with a strong topology as follows: a neighborhood
V ′
ϵ of 0 in V ′

s is defined by

V ′
ϵ =

{
x′ ∈ V ′∣∣supx∈B|x′(x)| < ϵ

}
(63)

for any ϵ and any bounded set B ⊂ Vs. V ′
s equipped with the strong

topology will be denoted also as V ′
ss.
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We can immediately transfer these concepts to the space F and its duals.
The space F′ with the weak topology will be denoted by F′

w and F with
the strong topology will be denoted by Fs. The dual of the latter will be
denoted with the symbol F′

s

9. The spaces of test states and the space of generalized
states

The space F equipped with the strong topology will be our space of test
states. The dual of the latter, i.e. F′

s will be our space of generalized states
or distributions. If we equip the latter with the strong topology it will be
denoted by F′

ss.

As in ordinary distribution theory we have to verify that F is a rich enough
filter that no regular behaviour can escape through it. We first remark that
the cardinality of the basis Ωα with fixed ε is the same as the cardinality
of the Fock space states F . Now let us compare the situation here with
sec. 5.3. To be able to claim that F is rich enough we must show that a
state that annihilates the full F can only be 0. To see this let us consider
a generic finite linear combination of states Ωα, say Υ, and suppose that

⟨Υ|Ωα⟩ = 0, ∀Ωα ∈ F (64)

But if such a state Υ were to exist it would mean that the inner product
(60) is degenerate. As far as we can exclude the degeneracy of the inner
product we conclude that F is a rich enough space of test states.

10. Conclusion

In this paper we have set the stage for a rigorous treatment of the problem
raised in section 3. We propose to interpret expressions such as (36) and
(37) in the framework of a generalized distribution theory, in which the
relevant objects are not ordinary functions but string fields. To this end we
have shown that it is possible to introduce a space of test string fields and
define a weak and strong topology on it. Then we have defined the dual
space of linear functionals together with its strong and weak topology. We
claim that the string fields of SFT must to be interpreted as elements of
this dual space. This must be the case in particular for Aε.

In [2, 4] arguments to support our claim that Aε is zero were put forward.
In this paper we have produced more evidence. In particular, as we have
noted, the space of test states F annihilates Aε. This is another element
in favor of our thesis. However we cannot yet claim that this is a rigorous
proof. For this to be the case we will have to prove that Aε is zero as a
limit in the strong dual topology.
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